Known Knowns and Unknowns: Near-realtime Earth Observation Via Query Bifurcation in Serval

Bill Tao, Om Chabra, Ishani Janveja, Indranil Gupta, Deepak Vasisht

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Earth observation satellites, in low Earth orbits, are increasingly approaching near-continuous imaging of the Earth. Today, these satellites capture an image of every part of Earth every few hours. However, the networking capabilities haven’t caught up, and can introduce delays of few hours to days in getting these images to Earth. While this delay is acceptable for delay-tolerant applications like land cover maps, crop type identification, etc., it is unacceptable for latency-sensitive applications like forest fire detection or disaster monitoring. We design Serval to enable near-realtime insights from Earth imagery for latency-sensitive applications despite the networking bottlenecks by leveraging the emerging computational capabilities on the satellites and ground stations. The key challenge for our work stems from the limited computational capabilities and power resources available on a satellite. We solve this challenge by leveraging predictability in satellite orbits to bifurcate computation across satellites and ground stations. We evaluate Serval using trace-driven simulations and hardware emulations on a dataset comprising ten million images captured using the Planet Dove constellation comprising nearly 200 satellites. Serval reduces end-to-end latency for high priority queries from 71.71 hours (incurred by state of the art) to 2 minutes, and 90-th percentile from 149 hours to 47 minutes.

Original languageEnglish (US)
Title of host publicationProceedings of the 21st USENIX Symposium on Networked Systems Design and Implementation, NSDI 2024
PublisherUSENIX Association
Pages809-824
Number of pages16
ISBN (Electronic)9781939133397
StatePublished - 2024
Event21st USENIX Symposium on Networked Systems Design and Implementation, NSDI 2024 - Santa Clara, United States
Duration: Apr 16 2024Apr 18 2024

Publication series

NameProceedings of the 21st USENIX Symposium on Networked Systems Design and Implementation, NSDI 2024

Conference

Conference21st USENIX Symposium on Networked Systems Design and Implementation, NSDI 2024
Country/TerritoryUnited States
CitySanta Clara
Period4/16/244/18/24

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Control and Systems Engineering

Fingerprint

Dive into the research topics of 'Known Knowns and Unknowns: Near-realtime Earth Observation Via Query Bifurcation in Serval'. Together they form a unique fingerprint.

Cite this