Abstract
This work reports kirigami-inspired architectures of graphene for strain-insensitive, surface-conformal stretchable multifunctional electrodes and sensors. The kirigami-inspired graphene electrode exhibits strain-insensitive electrical properties up to 240% applied tensile strain and mixed strain states, including a combination of stretching, twisting, and/or shearing. Moreover, a multitude of kirigami designs of graphene are explored computationally to predict deformation morphologies under different strain conditions and to achieve controllable stretchability. Notably, strain-insensitive graphene field-effect transistor and photodetection under 130% stretching and 360° torsion are achieved by strategically redistributing stress concentrations away from the active sensing elements via strain-responsive out-of-plane buckling at the vicinity of the kirigami notches. The combination of ultra-thin form factor, conformity on skin, and breathable notches suggests the applicability of kirigami-inspired platform based on atomically-thin materials in a broader set of wearable technology.
Original language | English (US) |
---|---|
Pages (from-to) | 58-65 |
Number of pages | 8 |
Journal | Materials Today |
Volume | 34 |
DOIs | |
State | Published - Apr 2020 |
ASJC Scopus subject areas
- General Materials Science
- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering