Kinetic modeling of unsteady hypersonic flows over a tick geometry

Ozgur Tumuklu, Deborah A. Levin, Vassilis Theofilis

Research output: Contribution to journalArticle

Abstract

Hypersonic separated flows over the so-called "tick" geometry have been studied using the time-accurate direct simulation Monte Carlo (DSMC) method and global linear theory. The free stream condition for two experimental cases studied in the free-piston shock tunnel (named T-ADFA) was modeled. These two cases span a Knudsen number from transitional to continuum, a Mach number of about 10, a free stream enthalpy from 10 to 3 MJ/kg, a Reynolds number varying by a factor of four, and a leading edge geometry varied from sharp to one with a bevel of 0.2 mm. For the first time, the time dependence of flow macroparameters on the leading edge nose radius and the Reynolds number are studied using global linear theory. High-fidelity DSMC simulations showed that the temporal behavior of the separation region, which has significant effects on the surface parameters, depends closely on the leading edge bluntness and wall temperature. The formation of a secondary vortex was seen in about 2 ms for the sharp leading edge, whereas in the rounded leading edge geometry, it formed at earlier 0.7 ms. At a steady state, the size and structure of the separation zone, vortex structures, and surface parameters predicted by DSMC were found to be in good agreement with computational fluid dynamics for the higher density case. Finally, linear stability theory showed that for some leading edge shapes and flow densities, the time to reach the steady state was longer than the facility measurement time.

Original languageEnglish (US)
Article number056108
JournalPhysics of fluids
Volume31
Issue number5
DOIs
StatePublished - May 1 2019

    Fingerprint

ASJC Scopus subject areas

  • Condensed Matter Physics

Cite this