Kinetic Control in the Synthesis of a Möbius Tris((ethynyl)[5]helicene) Macrocycle Using Alkyne Metathesis

Xing Jiang, Summer D. Laffoon, Dandan Chen, Salvador Pérez-Estrada, Andrew S. Danis, Joaquín Rodríguez-López, Miguel A. Garcia-Garibay, Jun Zhu, Jeffrey S. Moore

Research output: Contribution to journalArticle

Abstract

The synthesis of conjugated Möbius molecules remains elusive since twisted and macrocyclic structures are low-entropy species sporting their own synthetic challenges. Here we report the synthesis of a Möbius macrocycle in 84% yield via alkyne metathesis of 2,13-bis(propynyl)[5]helicene. MALDI-MS, NMR spectroscopy, and X-ray diffraction indicated a trimeric product of twofold symmetry with PPM/MMP configurations in the helicene subunits. Alternatively, a threefold-symmetric PPP/MMM structure was determined by DFT calculations to be more thermodynamically stable, illustrating remarkable kinetic selectivity for this alkyne metathesis cyclooligomerization. Computational studies provided insight into the kinetic selectivity, demonstrating a difference of 15.4 kcal/mol between the activation barriers for the PPM/MMP and PPP/MMM diastereodetermining steps. Computational (ACID and EDDB) and experimental (UV-vis and fluorescence spectroscopy and cyclic voltammetry) studies revealed weak conjugation between the alkyne and adjacent helicene groups as well as the lack of significant global aromaticity. Separation of the PPM and MMP enantiomers was achieved via chiral HPLC at the analytical scale.

Original languageEnglish (US)
Pages (from-to)6493-6498
Number of pages6
JournalJournal of the American Chemical Society
Volume142
Issue number14
DOIs
StatePublished - Apr 8 2020

ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint Dive into the research topics of 'Kinetic Control in the Synthesis of a Möbius Tris((ethynyl)[5]helicene) Macrocycle Using Alkyne Metathesis'. Together they form a unique fingerprint.

  • Cite this