KHAN: Knowledge-Aware Hierarchical Attention Networks for Accurate Political Stance Prediction

Yunyong Ko, Seongeun Ryu, Soeun Han, Youngseung Jeon, Jaehoon Kim, Sohyun Park, Kyungsik Han, Hanghang Tong, Sang Wook Kim

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The political stance prediction for news articles has been widely studied to mitigate the echo chamber effect - people fall into their thoughts and reinforce their pre-existing beliefs. The previous works for the political stance problem focus on (1) identifying political factors that could reflect the political stance of a news article and (2) capturing those factors effectively. Despite their empirical successes, they are not sufficiently justified in terms of how effective their identified factors are in the political stance prediction. Motivated by this, in this work, we conduct a user study to investigate important factors in political stance prediction, and observe that the context and tone of a news article (implicit) and external knowledge for real-world entities appearing in the article (explicit) are important in determining its political stance. Based on this observation, we propose a novel knowledge-aware approach to political stance prediction (KHAN), employing (1) hierarchical attention networks (HAN) to learn the relationships among words and sentences in three different levels and (2) knowledge encoding (KE) to incorporate external knowledge for real-world entities into the process of political stance prediction. Also, to take into account the subtle and important difference between opposite political stances, we build two independent political knowledge graphs (KG) (i.e., KG-lib and KG-con) by ourselves and learn to fuse the different political knowledge. Through extensive evaluations on three real-world datasets, we demonstrate the superiority of KHAN in terms of (1) accuracy, (2) efficiency, and (3) effectiveness.

Original languageEnglish (US)
Title of host publicationACM Web Conference 2023 - Proceedings of the World Wide Web Conference, WWW 2023
PublisherAssociation for Computing Machinery
Pages1572-1583
Number of pages12
ISBN (Electronic)9781450394161
DOIs
StatePublished - Apr 30 2023
Event2023 World Wide Web Conference, WWW 2023 - Austin, United States
Duration: Apr 30 2023May 4 2023

Publication series

NameACM Web Conference 2023 - Proceedings of the World Wide Web Conference, WWW 2023

Conference

Conference2023 World Wide Web Conference, WWW 2023
Country/TerritoryUnited States
CityAustin
Period4/30/235/4/23

Keywords

  • echo chamber effect
  • hierarchical attention networks
  • knowledge graph embedding
  • political stance prediction

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Software

Fingerprint

Dive into the research topics of 'KHAN: Knowledge-Aware Hierarchical Attention Networks for Accurate Political Stance Prediction'. Together they form a unique fingerprint.

Cite this