Abstract
Over the last two decades, robust optimization has emerged as a computationally attractive approach to formulate and solve single-stage decision problems affected by uncertainty. More recently, robust optimization has been successfully applied to multistage problems with continuous recourse. This paper takes a step toward extending the robust optimization methodology to problems with integer recourse, which have largely resisted solution so far. To this end, we approximate two-stage robust binary programs by their corresponding K-adaptability problems, in which the decision maker precommits to K second-stage policies, here -and-now, and implements the best of these policies once the uncertain parameters are observed. We study the approximation quality and the computational complexity of the K-adaptability problem, and we propose two mixed-integer linear programming reformulations that can be solved with off-the-shelf software. We demonstrate the effectiveness of our reformulations for stylized instances of supply chain design, route planning, and capital budgeting problems.
Original language | English (US) |
---|---|
Pages (from-to) | 877-891 |
Number of pages | 15 |
Journal | Operations Research |
Volume | 63 |
Issue number | 4 |
DOIs | |
State | Published - Jul 1 2015 |
Externally published | Yes |
ASJC Scopus subject areas
- Computer Science Applications
- Management Science and Operations Research