Judgments of physics problem difficulty among experts and novices

Witat Fakcharoenphol, Jason W. Morphew, José P. Mestre

Research output: Contribution to journalArticlepeer-review

Abstract

Students' ability to effectively study for an exam, or to manage their time during an exam, is related to their metacognitive capacity. Prior research has demonstrated the effective use of metacognitive strategies during learning and retrieval is related to content expertise. Students also make judgments of their own learning and of problem difficulty to guide their studying. This study extends prior research by investigating the accuracy of novices' and experts' ability to judge problem difficulty across two experiments; here "accuracy" refers to whether or not their judgments of problem difficulty corresponds with actual exam performance in an introductory mechanics physics course. In the first experiment, physics education research (PER) experts judged the difficulty of introductory physics problems and provided the rationales behind their judgments. Findings indicate that experts use a number of different problem features to make predictions of problem difficulty. While experts are relatively accurate in judging problem difficulty, their content expertise may interfere with their ability to predict student performance on some question types. In the second experiment novices and "near experts" (graduate TAs) judged which question from a problem pair (taken from a real exam) was more difficult. The results indicate that judgments of problem difficulty are more accurate for those with greater content expertise, suggesting that the ability to predict problem difficulty is a trait of expertise which develops with experience.

Original languageEnglish (US)
Article number020128
JournalPhysical Review Special Topics - Physics Education Research
Volume11
Issue number2
DOIs
StatePublished - Oct 23 2015

ASJC Scopus subject areas

  • Education
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Judgments of physics problem difficulty among experts and novices'. Together they form a unique fingerprint.

Cite this