Joint Knowledge Graph Completion and Question Answering

Lihui Liu, Boxin Du, Jiejun Xu, Yinglong Xia, Hanghang Tong

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Knowledge graph reasoning plays a pivotal role in many real-world applications, such as network alignment, computational fact-checking, recommendation, and many more. Among these applications, knowledge graph completion (KGC) and multi-hop question answering over knowledge graph (Multi-hop KGQA) are two representative reasoning tasks. In the vast majority of the existing works, the two tasks are considered separately with different models or algorithms. However, we envision that KGC and Multi-hop KGQA are closely related to each other. Therefore, the two tasks will benefit from each other if they are approached adequately. In this work, we propose a neural model named BiNet to jointly handle KGC and multi-hop KGQA, and formulate it as a multi-task learning problem. Specifically, our proposed model leverages a shared embedding space and an answer scoring module, which allows the two tasks to automatically share latent features and learn the interactions between natural language question decoder and answer scoring module. Compared to the existing methods, the proposed BiNet model addresses both multi-hop KGQA and KGC tasks simultaneously with superior performance. Experiment results show that BiNet outperforms state-of-the-art methods on a wide range of KGQA and KGC benchmark datasets.

Original languageEnglish (US)
Title of host publicationKDD 2022 - Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
PublisherAssociation for Computing Machinery
Pages1098-1108
Number of pages11
ISBN (Electronic)9781450393850
DOIs
StatePublished - Aug 14 2022
Event28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2022 - Washington, United States
Duration: Aug 14 2022Aug 18 2022

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

Conference

Conference28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2022
Country/TerritoryUnited States
CityWashington
Period8/14/228/18/22

Keywords

  • knowledge graph completion
  • knowledge graph question answering
  • multi-task learning

ASJC Scopus subject areas

  • Software
  • Information Systems

Fingerprint

Dive into the research topics of 'Joint Knowledge Graph Completion and Question Answering'. Together they form a unique fingerprint.

Cite this