Joint inference for event timeline construction

Quang Xuan Do, Wei Lu, Dan Roth

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper addresses the task of constructing a timeline of events mentioned in a given text. To accomplish that, we present a novel representation of the temporal structure of a news article based on time intervals. We then present an algorithmic approach that jointly optimizes the temporal structure by coupling local classifiers that predict associations and temporal relations between pairs of temporal entities with global constraints. Moreover, we present ways to leverage knowledge provided by event coreference to further improve the system performance. Overall, our experiments show that the joint inference model significantly outperformed the local classifiers by 9.2% of relative improvement in F1. The experiments also suggest that good event coref-erence could make remarkable contribution to a robust event timeline construction system.

Original languageEnglish (US)
Title of host publicationEMNLP-CoNLL 2012 - 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, Proceedings of the Conference
Pages677-687
Number of pages11
StatePublished - 2012
Externally publishedYes
Event2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, EMNLP-CoNLL 2012 - Jeju Island, Korea, Republic of
Duration: Jul 12 2012Jul 14 2012

Publication series

NameEMNLP-CoNLL 2012 - 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, Proceedings of the Conference

Other

Other2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, EMNLP-CoNLL 2012
Country/TerritoryKorea, Republic of
CityJeju Island
Period7/12/127/14/12

ASJC Scopus subject areas

  • Software

Fingerprint

Dive into the research topics of 'Joint inference for event timeline construction'. Together they form a unique fingerprint.

Cite this