Joint-Detnas: Upgrade your Detector with NAS, Pruning and Dynamic Distillation

Lewei Yao, Renjie Pi, Hang Xu, Wei Zhang, Zhenguo Li, Tong Zhang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We propose Joint-DetNAS, a unified NAS framework for object detection, which integrates 3 key components: Neural Architecture Search, pruning, and Knowledge Distillation. Instead of naively pipelining these techniques, our Joint-DetNAS optimizes them jointly. The algorithm consists of two core processes: student morphism optimizes the student's architecture and removes the redundant parameters, while dynamic distillation aims to find the optimal matching teacher. For student morphism, weight inheritance strategy is adopted, allowing the student to flexibly update its architecture while fully utilize the predecessor's weights, which considerably accelerates the search; To facilitate dynamic distillation, an elastic teacher pool is trained via integrated progressive shrinking strategy, from which teacher detectors can be sampled without additional cost in subsequent searches. Given a base detector as the input, our algorithm directly outputs the derived student detector with high performance without additional training. Experiments demonstrate that our Joint-DetNAS outperforms the naive pipelining approach by a great margin. Given a classic R101-FPN as the base detector, Joint-DetNAS is able to boost its mAP from 41.4 to 43.9 on MS COCO and reduce the latency by 47%, which is on par with the SOTA EfficientDet while requiring less search cost. We hope our proposed method can provide the community with a new way of jointly optimizing NAS, KD and pruning.

Original languageEnglish (US)
Title of host publicationProceedings - 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021
PublisherIEEE Computer Society
Pages10170-10179
Number of pages10
ISBN (Electronic)9781665445092
DOIs
StatePublished - 2021
Externally publishedYes
Event2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021 - Virtual, Online, United States
Duration: Jun 19 2021Jun 25 2021

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Conference

Conference2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021
Country/TerritoryUnited States
CityVirtual, Online
Period6/19/216/25/21

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Joint-Detnas: Upgrade your Detector with NAS, Pruning and Dynamic Distillation'. Together they form a unique fingerprint.

Cite this