Abstract
We introduce the notion of "Janus balance" (J), defined as the dimensionless ratio of work to transfer an amphiphilic colloidal particle (a "Janus particle") from the oil-water interface into the oil phase, normalized by the work needed to move it into the water phase. The J value can be calculated simply from the interfacial contact angle and the geometry of Janus particles, without the need to know the interfacial energy. It is demonstrated that Janus particles of the same chemical composition but different geometries will have the highest adsorption energy when J=1. Even for particles of homogeneous chemical makeup, the Janus balance concept can be applied when considering the contact angle hysteresis in desorbing the particle from equilibrium into the water or oil phase. The Janus balance concept may enable predictions of how a Janus particle behaves with respect to efficiency and function as a solid surfactant, as the Janus balance of solid surfactants is the analog of the classical hydrophile-lipophile balance of small surfactant molecules.
Original language | English (US) |
---|---|
Article number | 161102 |
Journal | Journal of Chemical Physics |
Volume | 127 |
Issue number | 16 |
DOIs | |
State | Published - 2007 |
Externally published | Yes |
ASJC Scopus subject areas
- General Physics and Astronomy
- Physical and Theoretical Chemistry