TY - GEN
T1 - Iterative learning for reliable crowdsourcing systems
AU - Karger, David R.
AU - Oh, Sewoong
AU - Shah, Devavrat
PY - 2011
Y1 - 2011
N2 - Crowdsourcing systems, in which tasks are electronically distributed to numerous "information piece-workers", have emerged as an effective paradigm for humanpowered solving of large scale problems in domains such as image classification, data entry, optical character recognition, recommendation, and proofreading. Because these low-paid workers can be unreliable, nearly all crowdsourcers must devise schemes to increase confidence in their answers, typically by assigning each task multiple times and combining the answers in some way such as majority voting. In this paper, we consider a general model of such crowdsourcing tasks, and pose the problem of minimizing the total price (i.e., number of task assignments) that must be paid to achieve a target overall reliability. We give a new algorithm for deciding which tasks to assign to which workers and for inferring correct answers from the workers' answers. We show that our algorithm significantly outperforms majority voting and, in fact, is asymptotically optimal through comparison to an oracle that knows the reliability of every worker.
AB - Crowdsourcing systems, in which tasks are electronically distributed to numerous "information piece-workers", have emerged as an effective paradigm for humanpowered solving of large scale problems in domains such as image classification, data entry, optical character recognition, recommendation, and proofreading. Because these low-paid workers can be unreliable, nearly all crowdsourcers must devise schemes to increase confidence in their answers, typically by assigning each task multiple times and combining the answers in some way such as majority voting. In this paper, we consider a general model of such crowdsourcing tasks, and pose the problem of minimizing the total price (i.e., number of task assignments) that must be paid to achieve a target overall reliability. We give a new algorithm for deciding which tasks to assign to which workers and for inferring correct answers from the workers' answers. We show that our algorithm significantly outperforms majority voting and, in fact, is asymptotically optimal through comparison to an oracle that knows the reliability of every worker.
UR - http://www.scopus.com/inward/record.url?scp=84860610267&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84860610267&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84860610267
SN - 9781618395993
T3 - Advances in Neural Information Processing Systems 24: 25th Annual Conference on Neural Information Processing Systems 2011, NIPS 2011
BT - Advances in Neural Information Processing Systems 24
T2 - 25th Annual Conference on Neural Information Processing Systems 2011, NIPS 2011
Y2 - 12 December 2011 through 14 December 2011
ER -