TY - JOUR
T1 - Ion permeability of the nuclear pore complex and ion-induced macromolecular permeation as studied by scanning electrochemical and fluorescence microscopy
AU - Kim, Jiyeon
AU - Izadyar, Anahita
AU - Shen, Mei
AU - Ishimatsu, Ryoichi
AU - Amemiya, Shigeru
PY - 2014/2/18
Y1 - 2014/2/18
N2 - Efficient delivery of therapeutic macromolecules and nanomaterials into the nucleus is imperative for gene therapy and nanomedicine. Nucleocytoplasmic molecular transport, however, is tightly regulated by the nuclear pore complex (NPC) with the hydrophobic transport barriers based on phenylalanine and glycine repeats. Herein, we apply scanning electrochemical microscopy (SECM) to quantitatively study the permeability of the NPCs to small probe ions with a wide range of hydrophobicity as a measure of their hydrophobic interactions with the transport barriers. Amperometric detection of the redox-inactive probe ions is enabled by using the ion-selective SECM tips based on the micropipet- or nanopipet-supported interfaces between two immiscible electrolyte solutions. The remarkably high ion permeability of the NPCs is successfully measured by SECM and theoretically analyzed. This analysis demonstrates that the ion permeability of the NPCs is determined by the dimensions and density of the nanopores without a significant effect of the transport barriers on the transported ions. Importantly, the weak ion-barrier interactions become significant at sufficiently high concentrations of extremely hydrophobic ions, i.e., tetraphenylarsonium and perfluorobutylsulfonate, to permeabilize the NPCs to naturally impermeable macromolecules. Dependence of ion-induced permeabilization of the NPC on the pathway and mode of macromolecular transport is studied by using fluorescence microscopy to obtain deeper insights into the gating mechanism of the NPC as the basis of a new transport model.
AB - Efficient delivery of therapeutic macromolecules and nanomaterials into the nucleus is imperative for gene therapy and nanomedicine. Nucleocytoplasmic molecular transport, however, is tightly regulated by the nuclear pore complex (NPC) with the hydrophobic transport barriers based on phenylalanine and glycine repeats. Herein, we apply scanning electrochemical microscopy (SECM) to quantitatively study the permeability of the NPCs to small probe ions with a wide range of hydrophobicity as a measure of their hydrophobic interactions with the transport barriers. Amperometric detection of the redox-inactive probe ions is enabled by using the ion-selective SECM tips based on the micropipet- or nanopipet-supported interfaces between two immiscible electrolyte solutions. The remarkably high ion permeability of the NPCs is successfully measured by SECM and theoretically analyzed. This analysis demonstrates that the ion permeability of the NPCs is determined by the dimensions and density of the nanopores without a significant effect of the transport barriers on the transported ions. Importantly, the weak ion-barrier interactions become significant at sufficiently high concentrations of extremely hydrophobic ions, i.e., tetraphenylarsonium and perfluorobutylsulfonate, to permeabilize the NPCs to naturally impermeable macromolecules. Dependence of ion-induced permeabilization of the NPC on the pathway and mode of macromolecular transport is studied by using fluorescence microscopy to obtain deeper insights into the gating mechanism of the NPC as the basis of a new transport model.
UR - http://www.scopus.com/inward/record.url?scp=84894243046&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84894243046&partnerID=8YFLogxK
U2 - 10.1021/ac403607s
DO - 10.1021/ac403607s
M3 - Article
C2 - 24460147
AN - SCOPUS:84894243046
SN - 0003-2700
VL - 86
SP - 2090
EP - 2098
JO - Analytical Chemistry
JF - Analytical Chemistry
IS - 4
ER -