Investigation of effective system designs for transcranial photoacoustic tomography of the brain

Kenji Mitsuhashi, Robert W. Schoonover, Chao Huang, Lihong V. Wang, Mark A. Anastasio

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Photoacoustic computed tomography (PACT) holds great promise for transcranial brain imaging. However, the strong reflection, scattering and attenuation of acoustic waves in the skull present significant challenges to developing this method. We report on a systematic computer-simulation study of transcranial brain imaging using PACT. The goal of this study was to identify an effective imaging system design that can be translated for clinical use. The propagation of photoacoustic waves through a model skull was studied by use of an elastic finite-difference time-domain (FDTD) method. The acoustic radiation pattern from a photoacoustic source just beneath the skull was observed with a ring transducer array that was level with the source. The observed radiation pattern was found to contain stronger contributions from waves that were converted to shear waves in skull than longitudinal waves that did not undergo mode conversion. Images reconstructed from the pressure data that contain shear wave components possess better resolution than images reconstructed from the data that only contain the longitudinal wave signals. These observations revealed that the detection system should be designed to capture photoacoustic signals that travel through the skull in the form of shear waves as well as in the form of longitudinal waves. A preliminary investigation on the effect of the presence of absorption in the skull is also reported. This study provides an insight into the wave phenomena in transcranial PACT imaging, as well as a concrete detection design strategy that mitigates the degraded resolution of reconstructed images.

Original languageEnglish (US)
Title of host publicationPhotons Plus Ultrasound
Subtitle of host publicationImaging and Sensing 2014
PublisherSPIE
ISBN (Print)9780819498564
DOIs
StatePublished - 2014
Externally publishedYes
EventPhotons Plus Ultrasound: Imaging and Sensing 2014 - San Francisco, CA, United States
Duration: Feb 2 2014Feb 5 2014

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume8943
ISSN (Print)1605-7422

Other

OtherPhotons Plus Ultrasound: Imaging and Sensing 2014
Country/TerritoryUnited States
CitySan Francisco, CA
Period2/2/142/5/14

Keywords

  • Brain imaging
  • Image reconstruction
  • Photoacoustic computed tomography

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Biomaterials
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Investigation of effective system designs for transcranial photoacoustic tomography of the brain'. Together they form a unique fingerprint.

Cite this