Abstract
The intraseasonal variations in anticyclonic Rossby wave breaking (AWB) events, which are characterized by synoptic-scale irreversible meridional overturning of potential vorticity over the North Pacific, and their modulations on tropical cyclone (TC) activity over the western North Pacific (WNP), were investigated in this study. Spectral analysis of the AWB frequency shows significant variability within a period of 7–40 days, closely linked to the subseasonal variability of the jet stream intensity. When the jet stream weakens at its exit region over the North Pacific, the AWB occurs along with an equatorward Rossby wave flux. This AWB is preceded by an intensified Rossby wave train across Eurasia 12 days earlier. Simultaneously, a high potential vorticity intrusion is advected in the upper troposphere from the North Pacific toward the WNP, and suppressed TC activities are observed over the WNP open ocean where decreased moisture and temperature, subsidence, and increased vertical wind shear prevail. In contrast, anomalously enhanced convection, positive relative vorticity, and ascending motion are found in the southwestern quadrant of the AWB, facilitating enhanced TC activities over the South China Sea (SCS). Further analysis indicates that the impact of the AWB on TC activities over the WNP is robust and independent of the tropical intraseasonal convection over the tropical Indian Ocean and SCS, even though it accompanies the increased AWB frequency.
Original language | English (US) |
---|---|
Pages (from-to) | 179-197 |
Number of pages | 19 |
Journal | Journal of Climate |
Volume | 37 |
Issue number | 1 |
DOIs | |
State | Published - Jan 10 2024 |
Keywords
- Intraseasonal variability
- North Pacific Ocean
- Rossby waves
- Tropical cyclones
ASJC Scopus subject areas
- Atmospheric Science