TY - JOUR
T1 - Interrater Reliability of Expert Electroencephalographers Identifying Seizures and Rhythmic and Periodic Patterns in EEGs
AU - Jing, Jin
AU - Ge, Wendong
AU - Struck, Aaron F.
AU - Fernandes, Marta Bento
AU - Hong, Shenda
AU - An, Sungtae
AU - Fatima, Safoora
AU - Herlopian, Aline
AU - Karakis, Ioannis
AU - Halford, Jonathan J.
AU - Ng, Marcus C.
AU - Johnson, Emily L.
AU - Appavu, Brian L.
AU - Sarkis, Rani A.
AU - Osman, Gamaleldin
AU - Kaplan, Peter W.
AU - Dhakar, Monica B.
AU - Jayagopal, Lakshman Arcot
AU - Sheikh, Zubeda
AU - Taraschenko, Olga
AU - Schmitt, Sarah
AU - Haider, Hiba A.
AU - Kim, Jennifer A.
AU - Swisher, Christa B.
AU - Gaspard, Nicolas
AU - Cervenka, Mackenzie C.
AU - Rodriguez Ruiz, Andres A.
AU - Lee, Jong Woo
AU - Tabaeizadeh, Mohammad
AU - Gilmore, Emily J.
AU - Nordstrom, Kristy
AU - Yoo, Ji Yeoun
AU - Holmes, Manisha G.
AU - Herman, Susan T.
AU - Williams, Jennifer A.
AU - Pathmanathan, Jay
AU - Nascimento, Fábio A.
AU - Fan, Ziwei
AU - Nasiri, Samaneh
AU - Shafi, Mouhsin M.
AU - Cash, Sydney S.
AU - Hoch, Daniel B.
AU - Cole, Andrew J.
AU - Rosenthal, Eric S.
AU - Zafar, Sahar F.
AU - Sun, Jimeng
AU - Westover, M. Brandon
N1 - M.B. Westover received funding from the Glenn Foundation for Medical Research and American Federation for Aging Research (Breakthroughs in Gerontology Grant); American Academy of Sleep Medicine (AASM Foundation Strategic Research Award); Football Players Health Study (FPHS) at Harvard University; Department of Defense through a subcontract from Moberg ICU Solutions, Inc; NIH (R01NS102190, R01NS102574, R01NS107291, RF1AG064312, and R01AG062989); and NSF (Award No. SCH-2014431). Dr. A.F. Struck received funding from the NIH (R01NS111022). S.S. Cash was funded by NIH NINDS R01 NS062092 and NIH NINDS K24 NS088568. M.B. Dhakar received funding from NIH NINDS NS11672601 and an American Epilepsy Society Infrastructure Research Award and got clinical trial support from Marinus Pharmaceuticals and Parexel Inc. J.A. Kim received support from NIH-NINDS (R25NS06574), AHA, and Bee Foundation. Dr. Olha Taraschenko was supported by research grants from the NIH (P20GM130447) and the American Epilepsy Society-NORSE Institute Seed grant. M.C. Cervenka receives or has received research grants from Nutricia, Vitaflo, Glut1 Deficiency Foundation, and BrightFocus Foundation; honoraria from Nutricia and Vitaflo/Nestle Health Sciences; royalties from Demos/Springer Publishing Company; and consulting fees from Nutricia and Glut1 Deficiency Foundation. The funding sources had no role in study design, data collection, analysis, interpretation, or writing of the report. All authors had full access to all data, and the corresponding author had final responsibility for the decision to submit for publication.
PY - 2023/4/25
Y1 - 2023/4/25
N2 - Background and Objectives The validity of brain monitoring using electroencephalography (EEG), particularly to guide care in patients with acute or critical illness, requires that experts can reliably identify seizures and other potentially harmful rhythmic and periodic brain activity, collectively referred to as “ictal-interictal-injury continuum” (IIIC). Previous interrater reliability (IRR) studies are limited by small samples and selection bias. This study was conducted to assess the reliability of experts in identifying IIIC. Methods This prospective analysis included 30 experts with subspecialty clinical neurophysiology training from 18 institutions. Experts independently scored varying numbers of ten-second EEG segments as “seizure (SZ),” “lateralized periodic discharges (LPDs),” “generalized periodic discharges (GPDs),” “lateralized rhythmic delta activity (LRDA),” “generalized rhythmic delta activity (GRDA),” or “other.” EEGs were performed for clinical indications at Massachusetts General Hospital between 2006 and 2020. Primary outcome measures were pairwise IRR (average percent agreement [PA] between pairs of experts) and majority IRR (average PA with group consensus) for each class and beyond chance agreement (κ). Secondary outcomes were calibration of expert scoring to group consensus, and latent trait analysis to investigate contributions of bias and noise to scoring variability. Results Among 2,711 EEGs, 49% were from women, and the median (IQR) age was 55 (41) years. In total, experts scored 50,697 EEG segments; the median [range] number scored by each expert was 6,287.5 [1,002, 45,267]. Overall pairwise IRR was moderate (PA 52%, κ 42%), and majority IRR was substantial (PA 65%, κ 61%). Noise-bias analysis demonstrated that a single underlying receiver operating curve can account for most variation in experts' false-positive vs true-positive characteristics (median [range] of variance explained (R2): 95 [93, 98]%) and for most variation in experts' precision vs sensitivity characteristics (R2: 75 [59, 89]%). Thus, variation between experts is mostly attributable not to differences in expertise but rather to variation in decision thresholds. Discussion Our results provide precise estimates of expert reliability from a large and diverse sample and a parsimonious theory to explain the origin of disagreements between experts. The results also establish a standard for how well an automated IIIC classifier must perform to match experts. Classification of Evidence This study provides Class II evidence that an independent expert review reliably identifies ictal-interictal injury continuum patterns on EEG compared with expert consensus.
AB - Background and Objectives The validity of brain monitoring using electroencephalography (EEG), particularly to guide care in patients with acute or critical illness, requires that experts can reliably identify seizures and other potentially harmful rhythmic and periodic brain activity, collectively referred to as “ictal-interictal-injury continuum” (IIIC). Previous interrater reliability (IRR) studies are limited by small samples and selection bias. This study was conducted to assess the reliability of experts in identifying IIIC. Methods This prospective analysis included 30 experts with subspecialty clinical neurophysiology training from 18 institutions. Experts independently scored varying numbers of ten-second EEG segments as “seizure (SZ),” “lateralized periodic discharges (LPDs),” “generalized periodic discharges (GPDs),” “lateralized rhythmic delta activity (LRDA),” “generalized rhythmic delta activity (GRDA),” or “other.” EEGs were performed for clinical indications at Massachusetts General Hospital between 2006 and 2020. Primary outcome measures were pairwise IRR (average percent agreement [PA] between pairs of experts) and majority IRR (average PA with group consensus) for each class and beyond chance agreement (κ). Secondary outcomes were calibration of expert scoring to group consensus, and latent trait analysis to investigate contributions of bias and noise to scoring variability. Results Among 2,711 EEGs, 49% were from women, and the median (IQR) age was 55 (41) years. In total, experts scored 50,697 EEG segments; the median [range] number scored by each expert was 6,287.5 [1,002, 45,267]. Overall pairwise IRR was moderate (PA 52%, κ 42%), and majority IRR was substantial (PA 65%, κ 61%). Noise-bias analysis demonstrated that a single underlying receiver operating curve can account for most variation in experts' false-positive vs true-positive characteristics (median [range] of variance explained (R2): 95 [93, 98]%) and for most variation in experts' precision vs sensitivity characteristics (R2: 75 [59, 89]%). Thus, variation between experts is mostly attributable not to differences in expertise but rather to variation in decision thresholds. Discussion Our results provide precise estimates of expert reliability from a large and diverse sample and a parsimonious theory to explain the origin of disagreements between experts. The results also establish a standard for how well an automated IIIC classifier must perform to match experts. Classification of Evidence This study provides Class II evidence that an independent expert review reliably identifies ictal-interictal injury continuum patterns on EEG compared with expert consensus.
UR - http://www.scopus.com/inward/record.url?scp=85153680660&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85153680660&partnerID=8YFLogxK
U2 - 10.1212/WNL.0000000000201670
DO - 10.1212/WNL.0000000000201670
M3 - Article
C2 - 36460472
AN - SCOPUS:85153680660
SN - 0028-3878
VL - 100
SP - E1737-E1749
JO - Neurology
JF - Neurology
IS - 17
ER -