Interpretable Automatic Fine-grained Inconsistency Detection in Text Summarization

Hou Pong Chan, Qi Zeng, Heng Ji

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Existing factual consistency evaluation approaches for text summarization provide binary predictions and limited insights into the weakness of summarization systems. Therefore, we propose the task of fine-grained inconsistency detection, the goal of which is to predict the fine-grained types of factual errors in a summary. Motivated by how humans inspect factual inconsistency in summaries, we propose an interpretable fine-grained inconsistency detection model, FINEGRAINFACT, which explicitly represents the facts in the documents and summaries with semantic frames extracted by semantic role labeling, and highlights the related semantic frames to predict inconsistency. The highlighted semantic frames help verify predicted error types and correct inconsistent summaries. Experiment results demonstrate that our model outperforms strong baselines and provides evidence to support or refute the summary.

Original languageEnglish (US)
Title of host publicationFindings of the Association for Computational Linguistics, ACL 2023
PublisherAssociation for Computational Linguistics (ACL)
Pages6433-6444
Number of pages12
ISBN (Electronic)9781959429623
StatePublished - 2023
Event61st Annual Meeting of the Association for Computational Linguistics, ACL 2023 - Toronto, Canada
Duration: Jul 9 2023Jul 14 2023

Publication series

NameProceedings of the Annual Meeting of the Association for Computational Linguistics
ISSN (Print)0736-587X

Conference

Conference61st Annual Meeting of the Association for Computational Linguistics, ACL 2023
Country/TerritoryCanada
CityToronto
Period7/9/237/14/23

ASJC Scopus subject areas

  • Computer Science Applications
  • Linguistics and Language
  • Language and Linguistics

Fingerprint

Dive into the research topics of 'Interpretable Automatic Fine-grained Inconsistency Detection in Text Summarization'. Together they form a unique fingerprint.

Cite this