Abstract
Textual grounding is an important but challenging task for human-computer interaction, robotics and knowledge mining. Existing algorithms generally formulate the task as selection from a set of bounding box proposals obtained from deep net based systems. In this work, we demonstrate that we can cast the problem of textual grounding into a unified framework that permits efficient search over all possible bounding boxes. Hence, the method is able to consider significantly more proposals and doesn't rely on a successful first stage hypothesizing bounding box proposals. Beyond, we demonstrate that the trained parameters of our model can be used as word-embeddings which capture spatial-image relationships and provide interpretability. Lastly, at the time of submission, our approach outperformed the current state-of-the-art methods on the Flickr 30k Entities and the ReferItGame dataset by 3.08% and 7.77% respectively.
Original language | English (US) |
---|---|
Pages (from-to) | 1913-1923 |
Number of pages | 11 |
Journal | Advances in Neural Information Processing Systems |
Volume | 2017-December |
State | Published - 2017 |
Event | 31st Annual Conference on Neural Information Processing Systems, NIPS 2017 - Long Beach, United States Duration: Dec 4 2017 → Dec 9 2017 |
ASJC Scopus subject areas
- Computer Networks and Communications
- Information Systems
- Signal Processing