Interplay between Process Zone and Material Heterogeneities for Dynamic Cracks

Fabian Barras, Philippe H. Geubelle, Jean François Molinari

Research output: Contribution to journalArticlepeer-review

Abstract

Using an elastodynamic boundary integral formulation coupled with a cohesive model, we study the problem of a dynamic rupture front propagating along an heterogeneous plane. We show that small-scale heterogeneities facilitate the supershear transition of a mode-II crack. The elastic pulses radiated during front accelerations explain how microscopic variations of fracture toughness change the macroscopic rupture dynamics. Perturbations of dynamic fronts are then systematically studied with different microstructures and loading conditions. The process zone size is the intrinsic length scale controlling heterogeneous dynamic rupture. The ratio of this length scale to asperity size is proposed as an indicator to transition from quasihomogeneous to heterogeneous fracture. Moreover, we discuss how the shortening of the process zone size with increasing crack speed brings the front to interact with smaller details of the microstructure. This study shines new light on recent experiments reporting perturbations of dynamic rupture fronts, which intensify with crack propagation speed.

Original languageEnglish (US)
Article number144101
JournalPhysical review letters
Volume119
Issue number14
DOIs
StatePublished - Oct 2 2017

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Interplay between Process Zone and Material Heterogeneities for Dynamic Cracks'. Together they form a unique fingerprint.

Cite this