Abstract
The low energy effective field theories of (2 + 1) dimensional topological phases of matter provide powerful avenues for investigating entanglement in their ground states. In [1] the entanglement between distinct Abelian topological phases was investigated through Abelian Chern-Simons theories equipped with a set of topological boundary conditions (TBCs). In the present paper we extend the notion of a TBC to non-Abelian Chern-Simons theories, providing an effective description for a class of gapped interfaces across non-Abelian topological phases. These boundary conditions furnish a defining relation for the extended Hilbert space of the quantum theory and allow the calculation of entanglement directly in the gauge theory. Because we allow for trivial interfaces, this includes a generic construction of the extended Hilbert space in any (compact) Chern-Simons theory quantized on a Riemann surface. Additionally, this provides a constructive and principled definition for the Hilbert space of effective ground states of gapped phases of matter glued along gapped interfaces. Lastly, we describe a generalized notion of surgery, adding a powerful tool from topological field theory to the gapped interface toolbox.
Original language | English (US) |
---|---|
Article number | 9 |
Journal | Journal of High Energy Physics |
Volume | 2020 |
Issue number | 7 |
DOIs | |
State | Published - Jul 1 2020 |
Externally published | Yes |
Keywords
- Chern-Simons Theories
- Gauge Symmetry
- Topological Field Theories
- Topological States of Matter
ASJC Scopus subject areas
- Nuclear and High Energy Physics