TY - GEN
T1 - Interactive Visual Representation of Inter-Connected Requirements in Building Codes
AU - Xue, Xiaorui
AU - Zhang, Jiansong
AU - El-Gohary, Nora
N1 - Publisher Copyright:
© 2022 ASCE.
PY - 2022
Y1 - 2022
N2 - To facilitate a better understanding of building codes, the visualization of the embedded structures of the provisions and requirements of the codes is needed. Existing research efforts in building code compliance checking mostly do not purposefully represent building codes in formats that facilitate human understanding and interaction with the codes, such as XML and hypertext (text with links to other text). Visual programming commonly represents building codes more visually as flowcharts. However, flowcharts are static, and the generation of flowcharts is still manual. To address this lack of interactive visual representation of building code requirement structures, this paper proposes an automated building code structure extraction and visualization method for visualizing building code contents in a way that clearly shows the inter-connections between requirements and allows intuitive user interaction. In this method, to extract the chapter-section-subsection hierarchical structure and cross-reference structure, a new extraction method named Building Code Network Generator (BCNG) is proposed to automatically generate an interactive visualization using a directed network. The performance of the proposed BCNG was empirically tested on Chapters 5 and 10 of the International Building Code 2015, with a resulting precision, recall, and F1-score of 99.4%, 96.3%, and 97.8%, respectively. In addition, the extracted hierarchical and cross-reference structures were displayed using an open-source network visualization tool to facilitate human understanding and interactions with the building code requirements in automated compliance checking systems.
AB - To facilitate a better understanding of building codes, the visualization of the embedded structures of the provisions and requirements of the codes is needed. Existing research efforts in building code compliance checking mostly do not purposefully represent building codes in formats that facilitate human understanding and interaction with the codes, such as XML and hypertext (text with links to other text). Visual programming commonly represents building codes more visually as flowcharts. However, flowcharts are static, and the generation of flowcharts is still manual. To address this lack of interactive visual representation of building code requirement structures, this paper proposes an automated building code structure extraction and visualization method for visualizing building code contents in a way that clearly shows the inter-connections between requirements and allows intuitive user interaction. In this method, to extract the chapter-section-subsection hierarchical structure and cross-reference structure, a new extraction method named Building Code Network Generator (BCNG) is proposed to automatically generate an interactive visualization using a directed network. The performance of the proposed BCNG was empirically tested on Chapters 5 and 10 of the International Building Code 2015, with a resulting precision, recall, and F1-score of 99.4%, 96.3%, and 97.8%, respectively. In addition, the extracted hierarchical and cross-reference structures were displayed using an open-source network visualization tool to facilitate human understanding and interactions with the building code requirements in automated compliance checking systems.
UR - http://www.scopus.com/inward/record.url?scp=85128892962&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85128892962&partnerID=8YFLogxK
U2 - 10.1061/9780784483961.105
DO - 10.1061/9780784483961.105
M3 - Conference contribution
AN - SCOPUS:85128892962
T3 - Construction Research Congress 2022: Computer Applications, Automation, and Data Analytics - Selected Papers from Construction Research Congress 2022
SP - 1004
EP - 1012
BT - Construction Research Congress 2022
A2 - Jazizadeh, Farrokh
A2 - Shealy, Tripp
A2 - Garvin, Michael J.
PB - American Society of Civil Engineers
T2 - Construction Research Congress 2022: Computer Applications, Automation, and Data Analytics, CRC 2022
Y2 - 9 March 2022 through 12 March 2022
ER -