Interactive Clustering Techniques for Selecting Speaker-Independent Reference Templates for Isolated Word Recognition

Stephen E. Levinson, Lawrence R. Rabiner, Aaron E. Rosenberg, Jay G. Wilpon

Research output: Contribution to journalArticlepeer-review

Abstract

It is demonstrated that clustering can be a powerful tool for selecting reference templates for speaker-independent word recognition. We describe a set of clustering techniques specifically designed for this purpose. These interactive procedures identify coarse structure, fine structure, overlap of, and outliers from clusters. The techniques have been applied tp a large speech data base consisting of four repetitions of a 39 word vocabulary (the letters of the alphabet, the digits, and three auxiliary commands) spoken by 50 male and 50 female speakers. The results of the cluster analysis show that the data are highly structured containing large prominent clusters. Some statistics of the analysis and their significance are presented.

Original languageEnglish (US)
Pages (from-to)134-141
Number of pages8
JournalIEEE Transactions on Acoustics, Speech, and Signal Processing
Volume27
Issue number2
DOIs
StatePublished - Apr 1979
Externally publishedYes

ASJC Scopus subject areas

  • Signal Processing

Fingerprint

Dive into the research topics of 'Interactive Clustering Techniques for Selecting Speaker-Independent Reference Templates for Isolated Word Recognition'. Together they form a unique fingerprint.

Cite this