TY - JOUR
T1 - Interaction of RNA-binding proteins HuR and AUF1 with the human ATF3 mRNA 3′-untranslated region regulates its amino acid limitation-induced stabilization
AU - Pan, Yuan Xiang
AU - Chen, Hong
AU - Kilberg, Michael S.
PY - 2005/10/14
Y1 - 2005/10/14
N2 - ATF3 expression is induced in cells exposed to a variety of stress conditions, including nutrient limitation. Here we demonstrated that the mechanism by which the ATF3 mRNA content is increased following amino acid limitation of human HepG2 hepatoma cells is mRNA stabilization. Analysis of ATF3 mRNA turnover revealed that the half-life was increased from about 1 h in control cells to greater than 8 h in the histidine-deprived state, demonstrating mRNA stabilization in response to nutrient deprivation. Treatment of HepG2 cells with thapsigargin, which causes endoplasmic reticulum stress, also increased the half-life of ATF3 mRNA. HuR is an RNA-binding protein that regulates both the stability and cytoplasmic/nuclear localization of mRNA species containing AU-rich elements. Another RNA-binding protein, AUF1, regulates target mRNA molecules by enhancing their decay. Amino acid limitation caused a slightly elevated mRNA level for HuR and AUF1 mRNA. The nuclear HuR protein content was unchanged, and AUF1 protein increased slightly after amino acid limitation, whereas the cytoplasmic levels of both HuR and AUF1 protein increased. Immunoprecipitation of HuR-RNA complexes followed by reverse transcriptase-PCR analysis showed that HuR interacted with ATF3 mRNA in vivo and that this interaction increased following amino acid limitation. In contrast, the interaction of AUF1 with the ATF3 mRNA is decreased in histidine-deprived cells relative to control cells. Suppression of HuR expression by RNA interference partially blocked the accumulation of ATF3 mRNA following amino acid deprivation. The results demonstrated that coordinated regulation of mRNA stability by HuR and AUF1 proteins contributes to the observed increase in ATF3 expression following amino acid limitation.
AB - ATF3 expression is induced in cells exposed to a variety of stress conditions, including nutrient limitation. Here we demonstrated that the mechanism by which the ATF3 mRNA content is increased following amino acid limitation of human HepG2 hepatoma cells is mRNA stabilization. Analysis of ATF3 mRNA turnover revealed that the half-life was increased from about 1 h in control cells to greater than 8 h in the histidine-deprived state, demonstrating mRNA stabilization in response to nutrient deprivation. Treatment of HepG2 cells with thapsigargin, which causes endoplasmic reticulum stress, also increased the half-life of ATF3 mRNA. HuR is an RNA-binding protein that regulates both the stability and cytoplasmic/nuclear localization of mRNA species containing AU-rich elements. Another RNA-binding protein, AUF1, regulates target mRNA molecules by enhancing their decay. Amino acid limitation caused a slightly elevated mRNA level for HuR and AUF1 mRNA. The nuclear HuR protein content was unchanged, and AUF1 protein increased slightly after amino acid limitation, whereas the cytoplasmic levels of both HuR and AUF1 protein increased. Immunoprecipitation of HuR-RNA complexes followed by reverse transcriptase-PCR analysis showed that HuR interacted with ATF3 mRNA in vivo and that this interaction increased following amino acid limitation. In contrast, the interaction of AUF1 with the ATF3 mRNA is decreased in histidine-deprived cells relative to control cells. Suppression of HuR expression by RNA interference partially blocked the accumulation of ATF3 mRNA following amino acid deprivation. The results demonstrated that coordinated regulation of mRNA stability by HuR and AUF1 proteins contributes to the observed increase in ATF3 expression following amino acid limitation.
UR - http://www.scopus.com/inward/record.url?scp=27144493076&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=27144493076&partnerID=8YFLogxK
U2 - 10.1074/jbc.M507802200
DO - 10.1074/jbc.M507802200
M3 - Article
C2 - 16109718
AN - SCOPUS:27144493076
SN - 0021-9258
VL - 280
SP - 34609
EP - 34616
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 41
ER -