TY - JOUR
T1 - Interaction of a kinesin-like protein with calmodulin isoforms from Arabidopsis
AU - Reddy, Vaka S.
AU - Safadi, Farida
AU - Zielinski, Raymond E.
AU - Reddy, Anireddy S.N.
PY - 1999/10/29
Y1 - 1999/10/29
N2 - In Arabidopsis and other plants there are multiple calmodulin isoforms. However, the role of these isoforms in regulating the activity of target proteins is obscure. Here, we analyzed the interaction between a kinesin-like calmodulin-binding motor protein (Reddy, A. S. N., Safadi, F., Narasimhulu, S. B., Golovkin, M., and Hu, X. (1996) J. Biol. Chem. 271, 7052-7060) and three calmodulin isoforms (calmodulin-2, -4, and -6) from Arabidopsis using different approaches. Gel mobility and fluorescence shift assays revealed that the motor binds to all calmodulin isoforms in a calcium-dependent manner. Furthermore, all calmodulin isoforms were able to activate bovine calcium/calmodulin-dependent phosphodiesterase. However, the concentration of calmodulin-2 required for half-maximal activation of phosphodiesterase is 2- and 6-fold lower compared with calmodulin-4 and -6, respectively. The dissociation constants of the motor to calmodulin-2, -4, and -6 are 12.8, 27.0, and 27.8 nM, respectively, indicating that calmodulin-2 has 2-fold higher affinity for the motor than calmodulin-4 and -6. Similar results were obtained using another assay that involves the binding of 35S-labeled calmodulin isoforms to the motor. The binding saturation curves of the motor with calmodulin isoforms have confirmed that calmodulin-2 has 2-fold higher affinity to the motor. However, the affinity of calmodulin-4 and -6 isoforms for the motor was about the same. Based on these studies, we conclude that all calmodulin isoforms bind to the motor protein but with different affinities.
AB - In Arabidopsis and other plants there are multiple calmodulin isoforms. However, the role of these isoforms in regulating the activity of target proteins is obscure. Here, we analyzed the interaction between a kinesin-like calmodulin-binding motor protein (Reddy, A. S. N., Safadi, F., Narasimhulu, S. B., Golovkin, M., and Hu, X. (1996) J. Biol. Chem. 271, 7052-7060) and three calmodulin isoforms (calmodulin-2, -4, and -6) from Arabidopsis using different approaches. Gel mobility and fluorescence shift assays revealed that the motor binds to all calmodulin isoforms in a calcium-dependent manner. Furthermore, all calmodulin isoforms were able to activate bovine calcium/calmodulin-dependent phosphodiesterase. However, the concentration of calmodulin-2 required for half-maximal activation of phosphodiesterase is 2- and 6-fold lower compared with calmodulin-4 and -6, respectively. The dissociation constants of the motor to calmodulin-2, -4, and -6 are 12.8, 27.0, and 27.8 nM, respectively, indicating that calmodulin-2 has 2-fold higher affinity for the motor than calmodulin-4 and -6. Similar results were obtained using another assay that involves the binding of 35S-labeled calmodulin isoforms to the motor. The binding saturation curves of the motor with calmodulin isoforms have confirmed that calmodulin-2 has 2-fold higher affinity to the motor. However, the affinity of calmodulin-4 and -6 isoforms for the motor was about the same. Based on these studies, we conclude that all calmodulin isoforms bind to the motor protein but with different affinities.
UR - http://www.scopus.com/inward/record.url?scp=0033615738&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0033615738&partnerID=8YFLogxK
U2 - 10.1074/jbc.274.44.31727
DO - 10.1074/jbc.274.44.31727
M3 - Article
C2 - 10531384
AN - SCOPUS:0033615738
SN - 0021-9258
VL - 274
SP - 31727
EP - 31733
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 44
ER -