Interacting multiple model-feedback particle filter for stochastic hybrid systems

Tao Yang, Henk A.P. Blom, Prashant G. Mehta

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this paper, a novel feedback control-based particle filter algorithm for the continuous-time stochastic hybrid system estimation problem is presented. This particle filter is referred to as the interacting multiple model-feedback particle filter (IMM-FPF), and is based on the recently developed feedback particle filter [15], [16], [17]. The IMM-FPF is comprised of a series of parallel FPFs, one for each discrete mode, and an exact filter recursion for the mode association probability. The proposed IMM-FPF represents a generalization of the Kalmanfilter based IMM algorithm to the general nonlinear filtering problem. The remarkable conclusion of this paper is that the IMM-FPF algorithm retains the innovation error-based feedback structure even for the nonlinear problem. The interaction/ merging process is also handled via a control-based approach. The theoretical results are illustrated with the aid of a numerical example problem for a maneuvering target tracking application.

Original languageEnglish (US)
Title of host publication2013 IEEE 52nd Annual Conference on Decision and Control, CDC 2013
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages7065-7070
Number of pages6
ISBN (Print)9781467357173
DOIs
StatePublished - Jan 1 2013
Event52nd IEEE Conference on Decision and Control, CDC 2013 - Florence, Italy
Duration: Dec 10 2013Dec 13 2013

Publication series

NameProceedings of the IEEE Conference on Decision and Control
ISSN (Print)0191-2216

Other

Other52nd IEEE Conference on Decision and Control, CDC 2013
CountryItaly
CityFlorence
Period12/10/1312/13/13

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Modeling and Simulation
  • Control and Optimization

Fingerprint Dive into the research topics of 'Interacting multiple model-feedback particle filter for stochastic hybrid systems'. Together they form a unique fingerprint.

Cite this