Abstract
An in situ platform for characterizing plasma-materials interactions at the nanoscale in the transmission electron microscope (TEM) has been demonstrated. Integrating a DC microplasma device, having plane-parallel electrodes with a 25 nm thick Au film on both the cathode and anode and operating in 760 Torr of Ar, within a TEM provides real-time observation of Au sputtering and island formation with a spatial resolution of < 100 nm. Analyses of TEM and atomic force microscopy images show the growth of Au islands to proceed by a Stranski-Krastanov process at a rate that varies linearly with the discharge power and is approximately a factor of 3 larger than the predictions of a DC plasma sputtering model. The experiments reported here extend in situ TEM diagnostics to plasma-solid and plasma-liquid interactions.
Original language | English (US) |
---|---|
Article number | 1325 |
Journal | Scientific reports |
Volume | 3 |
DOIs | |
State | Published - 2013 |
ASJC Scopus subject areas
- General