TY - JOUR
T1 - Integrating thermodynamic and sequence contexts improves protein-RNA binding prediction
AU - Su, Yufeng
AU - Luo, Yunan
AU - Zhao, Xiaoming
AU - Liu, Yang
AU - Peng, Jian
N1 - Publisher Copyright:
© 2019 Su et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2019
Y1 - 2019
N2 - Predicting RNA-binding protein (RBP) specificity is important for understanding gene expression regulation and RNA-mediated enzymatic processes. It is widely believed that RBP binding specificity is determined by both the sequence and structural contexts of RNAs. Existing approaches, including traditional machine learning algorithms and more recently, deep learning models, have been extensively applied to integrate RNA sequence and its predicted or experimental RNA structural probabilities for improving the accuracy of RBP binding prediction. Such models were trained mostly on the large-scale in vitro datasets, such as the RNAcompete dataset. However, in RNAcompete, most synthetic RNAs are unstructured, which makes machine learning methods not effectively extract RBP-binding structural preferences. Furthermore, RNA structure may be variable or multi-modal according to both theoretical and experimental evidence. In this work, we propose Thermo- Net, a thermodynamic prediction model by integrating a new sequence-embedding convolutional neural network model over a thermodynamic ensemble of RNA secondary structures. First, the sequence-embedding convolutional neural network generalizes the existing k-mer based methods by jointly learning convolutional filters and k-mer embeddings to represent RNA sequence contexts. Second, the thermodynamic average of deep-learning predictions is able to explore structural variability and improves the prediction, especially for the structured RNAs. Extensive experiments demonstrate that our method significantly outperforms existing approaches, including RCK, DeepBind and several other recent state-of-the-art methods for predictions on both in vitro and in vivo data. The implementation of ThermoNet is available at https://github.com/suyufeng/ThermoNet.
AB - Predicting RNA-binding protein (RBP) specificity is important for understanding gene expression regulation and RNA-mediated enzymatic processes. It is widely believed that RBP binding specificity is determined by both the sequence and structural contexts of RNAs. Existing approaches, including traditional machine learning algorithms and more recently, deep learning models, have been extensively applied to integrate RNA sequence and its predicted or experimental RNA structural probabilities for improving the accuracy of RBP binding prediction. Such models were trained mostly on the large-scale in vitro datasets, such as the RNAcompete dataset. However, in RNAcompete, most synthetic RNAs are unstructured, which makes machine learning methods not effectively extract RBP-binding structural preferences. Furthermore, RNA structure may be variable or multi-modal according to both theoretical and experimental evidence. In this work, we propose Thermo- Net, a thermodynamic prediction model by integrating a new sequence-embedding convolutional neural network model over a thermodynamic ensemble of RNA secondary structures. First, the sequence-embedding convolutional neural network generalizes the existing k-mer based methods by jointly learning convolutional filters and k-mer embeddings to represent RNA sequence contexts. Second, the thermodynamic average of deep-learning predictions is able to explore structural variability and improves the prediction, especially for the structured RNAs. Extensive experiments demonstrate that our method significantly outperforms existing approaches, including RCK, DeepBind and several other recent state-of-the-art methods for predictions on both in vitro and in vivo data. The implementation of ThermoNet is available at https://github.com/suyufeng/ThermoNet.
UR - http://www.scopus.com/inward/record.url?scp=85072509385&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85072509385&partnerID=8YFLogxK
U2 - 10.1371/journal.pcbi.1007283
DO - 10.1371/journal.pcbi.1007283
M3 - Article
C2 - 31483777
AN - SCOPUS:85072509385
SN - 1553-734X
VL - 15
JO - PLoS Computational Biology
JF - PLoS Computational Biology
IS - 9
M1 - e1007283
ER -