Abstract
Insecticides and acaricides are used commonly for pest suppression in agriculture, forestry and public health. The National Research Council (2000) and others have documented their value in protecting crops, livestock and humans from injury by insects and other arthropods. However, adverse effects of pesticide use can include the killing of non-target organisms, contamination of water supplies and persistence of unwanted residues on foods and animal feed. The chronic health effects of even extremely low concentrations of pesticides in food and water remain under debate today just as they were when the National Research Council (1993) reported on pesticides in children's diets in the early 1990s. Resistance to one or more pesticides has evolved in populations of over 500 insect and mite species (Clark & Yamaguchi, 2002), rendering many of those pesticides ineffective against the resistant populations. For these and other reasons, supplementing or replacing pesticides with non-chemical control tactics, including biological control, is a goal in many crop and livestock production systems. As biological control programs that rely on parasites, predators and pathogens are developed, they rarely are so robust as to provide all the pest suppression needed in an entire cropping system for the lifespan of the crop. Even if such robust biological control is attainable over time in specific crops or situations, initial efforts that target only one or a few pests often leave a need for pesticides to manage other species if their populations exceed economic thresholds.
Original language | English (US) |
---|---|
Title of host publication | Integrated Pest Management |
Subtitle of host publication | Concepts, Tactics, Strategies and Case Studies |
Publisher | Cambridge University Press |
Pages | 179-191 |
Number of pages | 13 |
ISBN (Electronic) | 9780511626463 |
ISBN (Print) | 9780521875950 |
DOIs | |
State | Published - Jan 1 2008 |
ASJC Scopus subject areas
- General Agricultural and Biological Sciences