Integrating model-based design and physical design evaluation for improved design education

Anand P. Deshmukh, Marlon E. Mitchell, James T. Allison

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This article presents the development, deployment, and assessment of a hands-on curriculum module for a seniorlevel course in component design at the Industrial and Enterprise Systems Engineering department at the University of Illinois at Urbana-Champaign. In this course students learn how to design engineering systems using gears, bearings, springs, steel structures, and other components. The course has traditionally included a semester group project where students apply their component design knowledge to a realistic design application, helping to further solidify and integrate their design knowledge. In recent years the project has centered on the design of a trailing arm automotive suspension system with components that interact in complicated ways. Students are expected to follow a rigorous engineering design process and support their design decisions with thorough engineering analysis. Until recently this project was limited to virtual analyses and design solutions; the connection between these design solutions and physical realization was an obvious gap in the project experience. This project was revised to incorporate a targeted handson curriculum module, which was introduced in fall 2014. Objectives of this module include helping students gain experience with the 'media' of engineering design, and to help students connect analytical and simulation-based studies with the corresponding physical system. The implemented module is a two-part activity in which students design a suspension system using model-based design techniques (in Matlab), followed by physical testing and further analysis using a specially built physically reconfigurable suspension testbed. This testbed allows students to test unique designs rapidly, observe real-time dynamic system performance, and to analyze the difference between simulated and physical test results. Through this activity we gauge students' attitudes towards traditional theoretical and paper-based design activities versus the hands-on module. We also work to answer the question: "to what extent does a project-based curriculum module influence student experiences and conceptual understanding of engineering design?" through systematic student surveys designed around this new hands-on curriculum module.

Original languageEnglish (US)
Title of host publication18th International Conference on Advanced Vehicle Technologies; 13th International Conference on Design Education; 9th Frontiers in Biomedical Devices
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791850138
DOIs
StatePublished - Jan 1 2016
EventASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2016 - Charlotte, United States
Duration: Aug 21 2016Aug 24 2016

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
Volume3

Other

OtherASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2016
CountryUnited States
CityCharlotte
Period8/21/168/24/16

ASJC Scopus subject areas

  • Mechanical Engineering
  • Computer Graphics and Computer-Aided Design
  • Computer Science Applications
  • Modeling and Simulation

Fingerprint Dive into the research topics of 'Integrating model-based design and physical design evaluation for improved design education'. Together they form a unique fingerprint.

Cite this