TY - GEN
T1 - Integrating immersive computing technology with mixed-integer nonlinear programming for disassembly sequence planning under uncertainty
AU - Behdad, Sara
AU - Berg, Leif P.
AU - Thurston, Deborah
AU - Vance, Judy
PY - 2012
Y1 - 2012
N2 - Disassembly sequence planning at the early conceptual stage of design leads to enormous benefits including simplification of products, lower assembly and disassembly costs, and design modifications which result in increased potential profitability of end-of-life salvaging operations. However, in the early design stage, determining the best disassembly sequence is challenging. First, the required information is not readily available and very time-consuming to gather. In addition, the best solution is sometimes counterintuitive, even to those with experience and expertise in disassembly procedures. Integrating analytical models with Immersive Computing Technology (ICT) can help designers overcome these issues. A two-stage procedure for doing so is introduced in this paper. In the first stage, a stochastic programming model together with the information obtained through immersive simulation is applied to determine the optimal disassembly sequence, while considering uncertain outcomes, such as time, cost and the probability of causing damage. In the second stage, ICT is applied as a tool to explore alternative disassembly sequence solutions in an intuitive way. The benefit of using this procedure is to determine the best disassembly sequence, not only by solving the analytic model, but also by capturing human expertise. The designer can apply the obtained results from these two stages to analyze and modify the product design. An example of a Burr puzzle is used to illustrate the application of the method.
AB - Disassembly sequence planning at the early conceptual stage of design leads to enormous benefits including simplification of products, lower assembly and disassembly costs, and design modifications which result in increased potential profitability of end-of-life salvaging operations. However, in the early design stage, determining the best disassembly sequence is challenging. First, the required information is not readily available and very time-consuming to gather. In addition, the best solution is sometimes counterintuitive, even to those with experience and expertise in disassembly procedures. Integrating analytical models with Immersive Computing Technology (ICT) can help designers overcome these issues. A two-stage procedure for doing so is introduced in this paper. In the first stage, a stochastic programming model together with the information obtained through immersive simulation is applied to determine the optimal disassembly sequence, while considering uncertain outcomes, such as time, cost and the probability of causing damage. In the second stage, ICT is applied as a tool to explore alternative disassembly sequence solutions in an intuitive way. The benefit of using this procedure is to determine the best disassembly sequence, not only by solving the analytic model, but also by capturing human expertise. The designer can apply the obtained results from these two stages to analyze and modify the product design. An example of a Burr puzzle is used to illustrate the application of the method.
UR - http://www.scopus.com/inward/record.url?scp=84884649175&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84884649175&partnerID=8YFLogxK
U2 - 10.1115/DETC2012-70392
DO - 10.1115/DETC2012-70392
M3 - Conference contribution
AN - SCOPUS:84884649175
SN - 9780791845028
T3 - Proceedings of the ASME Design Engineering Technical Conference
SP - 1143
EP - 1151
BT - 38th Design Automation Conference
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2012
Y2 - 12 August 2012 through 12 August 2012
ER -