Integrated experiment and modeling of insensitive high explosives

D. Scott Stewart, David E. Lambert, Sunhee Yoo, Mark Lieber, Steven Holman

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

New design paradigms for insensitive high explosives are being sought for use in munitions applications that require enhanced safety, reliability and performance. We describe recent work of our group that uses an integrated approach to develop predictive models, guided by experiments. Insensitive explosive can have relatively longer detonation reaction zones and slower reaction rates than their sensitive counterparts. We employ reactive flow models that are constrained by detonation shock dynamics (DSD) to pose candidate predictive models. We discuss the variation of the pressure dependent reaction rate exponent and reaction order on the length of the supporting reaction zone, the detonation velocity curvature relation, the computed critical energy required for initiation, the relation between the diameter effect curve and the corresponding normal detonation velocity curvature relation.

Original languageEnglish (US)
Title of host publicationShock Compression of Condensed Matter - 2009 - Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter
Pages91-94
Number of pages4
DOIs
StatePublished - 2009
EventConference of the American Physical Society Topical Group on Shock Compression of Condensed Matter, 2009 APS SCCM - Nashville, TN, United States
Duration: Jun 28 2009Jul 3 2009

Publication series

NameAIP Conference Proceedings
Volume1195
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Other

OtherConference of the American Physical Society Topical Group on Shock Compression of Condensed Matter, 2009 APS SCCM
Country/TerritoryUnited States
CityNashville, TN
Period6/28/097/3/09

Keywords

  • Detonation
  • Insensitive explosive

ASJC Scopus subject areas

  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Integrated experiment and modeling of insensitive high explosives'. Together they form a unique fingerprint.

Cite this