TY - GEN
T1 - Insider-attacks on physical-layer group secret-key generation in wireless networks
AU - Harshan, J.
AU - Chang, Sang Yoon
AU - Hu, Yih Chun
N1 - Publisher Copyright:
© 2017 IEEE.
PY - 2017/5/10
Y1 - 2017/5/10
N2 - Physical-layer group secret-key (GSK) generation is an effective way of generating secret keys in wireless networks, wherein the nodes exploit inherent randomness in the wireless channels to generate group keys, which are subsequently applied to secure messages while broadcasting, relaying, and other network-level communications. While existing GSK protocols focus on securing the common source of randomness from external eavesdroppers, they assume that the legitimate nodes of the group are trusted. In this paper, we address insider attacks from the legitimate participants of the wireless network during the key generation process. Instead of addressing conspicuous attacks such as switching-off communication, injecting noise, or denying consensus on group keys, we introduce stealth attacks that can go undetected against state-of- the-art GSK schemes. We propose two forms of attacks, namely: (i) different-key attacks, wherein an insider attempts to generate different keys at different nodes, especially across nodes that are out of range so that they fail to recover group messages despite possessing the group key, and (ii) low-rate key attacks, wherein an insider alters the common source of randomness so as to reduce the key-rate. We also discuss various detection techniques, which are based on detecting anomalies and inconsistencies on the channel measurements at the legitimate nodes. Through simulations we show that GSK generation schemes are vulnerable to insider-threats, especially on topologies that cannot support additional secure links between neighbouring nodes to verify the attacks.
AB - Physical-layer group secret-key (GSK) generation is an effective way of generating secret keys in wireless networks, wherein the nodes exploit inherent randomness in the wireless channels to generate group keys, which are subsequently applied to secure messages while broadcasting, relaying, and other network-level communications. While existing GSK protocols focus on securing the common source of randomness from external eavesdroppers, they assume that the legitimate nodes of the group are trusted. In this paper, we address insider attacks from the legitimate participants of the wireless network during the key generation process. Instead of addressing conspicuous attacks such as switching-off communication, injecting noise, or denying consensus on group keys, we introduce stealth attacks that can go undetected against state-of- the-art GSK schemes. We propose two forms of attacks, namely: (i) different-key attacks, wherein an insider attempts to generate different keys at different nodes, especially across nodes that are out of range so that they fail to recover group messages despite possessing the group key, and (ii) low-rate key attacks, wherein an insider alters the common source of randomness so as to reduce the key-rate. We also discuss various detection techniques, which are based on detecting anomalies and inconsistencies on the channel measurements at the legitimate nodes. Through simulations we show that GSK generation schemes are vulnerable to insider-threats, especially on topologies that cannot support additional secure links between neighbouring nodes to verify the attacks.
KW - Group keys
KW - Insider attacks
KW - Physical-layer security
KW - Secret key generation
UR - http://www.scopus.com/inward/record.url?scp=85019652593&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85019652593&partnerID=8YFLogxK
U2 - 10.1109/WCNC.2017.7925526
DO - 10.1109/WCNC.2017.7925526
M3 - Conference contribution
AN - SCOPUS:85019652593
T3 - IEEE Wireless Communications and Networking Conference, WCNC
BT - 2017 IEEE Wireless Communications and Networking Conference, WCNC 2017 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2017 IEEE Wireless Communications and Networking Conference, WCNC 2017
Y2 - 19 March 2017 through 22 March 2017
ER -