Input-to-state stabilization with minimum number of quantization regions

Yoav Sharon, Daniel Liberzon

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We study control systems where the state measurements are quantized and time-sampled, and an unknown disturbance is being applied. We present a dynamic quantization scheme that switches between three modes of operation. We show that by using this scheme with a continuous static feedback controller we achieve a closed-loop system which has the Input-to-State Stability property (ISS). Our design does not use any characterization of the disturbance; as long as the disturbance is bounded the system will remain stable. We show that three quantization regions per dimension is sufficient to achieve the ISS property, and furthermore we show that the ISS property is achievable using a data rate that is arbitrarily close to the minimum required data rate when no disturbance is applied.

Original languageEnglish (US)
Title of host publicationProceedings of the 46th IEEE Conference on Decision and Control 2007, CDC
Pages20-25
Number of pages6
DOIs
StatePublished - Dec 1 2007
Event46th IEEE Conference on Decision and Control 2007, CDC - New Orleans, LA, United States
Duration: Dec 12 2007Dec 14 2007

Publication series

NameProceedings of the IEEE Conference on Decision and Control
ISSN (Print)0191-2216

Other

Other46th IEEE Conference on Decision and Control 2007, CDC
CountryUnited States
CityNew Orleans, LA
Period12/12/0712/14/07

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Modeling and Simulation
  • Control and Optimization

Fingerprint Dive into the research topics of 'Input-to-state stabilization with minimum number of quantization regions'. Together they form a unique fingerprint.

Cite this