Input-output stability of linear consensus processes

Ji Liu, Tamer Basar, Angelia Nedic

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In a network of n agents, consensus means that all n agents reach an agreement on a specific value of some quantity via local interactions. A linear consensus process can typically be modeled by a discrete-time linear recursion equation or a continuous-time linear differential equation, whose equilibria include nonzero states of the form a1 where a is a constant and 1 is a column vector in Rn whose entries all equal 1. Using a suitably defined semi-norm, this paper extends the standard notion of input-output stability from linear systems to linear recursions and differential equations of this type. Sufficient conditions for input-output consensus stability are provided. Connections between uniform bounded-input, bounded-output consensus stability and uniform exponential consensus stability are established. Certain types of additive perturbation to a linear consensus process are considered.

Original languageEnglish (US)
Title of host publication2016 IEEE 55th Conference on Decision and Control, CDC 2016
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages6978-6983
Number of pages6
ISBN (Electronic)9781509018376
DOIs
StatePublished - Dec 27 2016
Event55th IEEE Conference on Decision and Control, CDC 2016 - Las Vegas, United States
Duration: Dec 12 2016Dec 14 2016

Publication series

Name2016 IEEE 55th Conference on Decision and Control, CDC 2016

Other

Other55th IEEE Conference on Decision and Control, CDC 2016
Country/TerritoryUnited States
CityLas Vegas
Period12/12/1612/14/16

ASJC Scopus subject areas

  • Artificial Intelligence
  • Decision Sciences (miscellaneous)
  • Control and Optimization

Fingerprint

Dive into the research topics of 'Input-output stability of linear consensus processes'. Together they form a unique fingerprint.

Cite this