Inhomogeneous hypergraph clustering with applications

Research output: Contribution to journalConference article

Abstract

Hypergraph partitioning is an important problem in machine learning, computer vision and network analytics. A widely used method for hypergraph partitioning relies on minimizing a normalized sum of the costs of partitioning hyperedges across clusters. Algorithmic solutions based on this approach assume that different partitions of a hyperedge incur the same cost. However, this assumption fails to leverage the fact that different subsets of vertices within the same hyperedge may have different structural importance. We hence propose a new hypergraph clustering technique, termed inhomogeneous hypergraph partitioning, which assigns different costs to different hyperedge cuts. We prove that inhomogeneous partitioning produces a quadratic approximation to the optimal solution if the inhomogeneous costs satisfy submodularity constraints. Moreover, we demonstrate that inhomogenous partitioning offers significant performance improvements in applications such as structure learning of rankings, subspace segmentation and motif clustering.

Original languageEnglish (US)
Pages (from-to)2309-2319
Number of pages11
JournalAdvances in Neural Information Processing Systems
Volume2017-December
StatePublished - Jan 1 2017
Externally publishedYes
Event31st Annual Conference on Neural Information Processing Systems, NIPS 2017 - Long Beach, United States
Duration: Dec 4 2017Dec 9 2017

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint Dive into the research topics of 'Inhomogeneous hypergraph clustering with applications'. Together they form a unique fingerprint.

  • Cite this