Inhibition of [FeFe]-hydrogenase by formaldehyde: Proposed mechanism and reactivity of FeFe alkyl complexes

Fanjun Zhang, Toby J. Woods, Lingyang Zhu, Thomas B. Rauchfuss

Research output: Contribution to journalArticlepeer-review

Abstract

The mechanism for inhibition of [FeFe]-hydrogenases by formaldehyde is examined with model complexes. Key findings: (i) CH2 donated by formaldehyde covalently link Fe and the amine cofactor, blocking the active site and (ii) the resulting Fe-alkyl is a versatile electrophilic alkylating agent. Solutions of Fe2[(μ-SCH2)2NH](CO)4(PMe3)2 (1) react with a mixture of HBF4 and CH2O to give three isomers of [Fe2[(μ-SCH2)2NCH2](CO)4(PMe3)2]+ ([2]+). X-ray crystallography verified the NCH2Fe linkage to an octahedral Fe(ii) site. Although [2]+ is stereochemically rigid on the NMR timescale, spin-saturation transfer experiments implicate reversible dissociation of the Fe-CH2 bond, allowing interchange of all three diastereoisomers. Using 13CH2O, the methylenation begins with formation of [Fe2[(μ-SCH2)2N13CH2OH](CO)4(PMe3)2]+. Protonation converts this hydroxymethyl derivative to [2]+, concomitant with 13C-labelling of all three methylene groups. The Fe-CH2N bond in [2]+ is electrophilic: PPh3, hydroxide, and hydride give, respectively, the phosphonium [Fe2[(μ-SCH2)2NCH2PPh3](CO)4(PMe3)2]+, 1, and the methylamine Fe2[(μ-SCH2)2NCH3](CO)4(PMe3)2. The reaction of [Fe2[(μ-SCH2)2NH](CN)2(CO)4]2- with CH2O/HBF4 gave [Fe2[(μ-SCH2)2NCH2CN](CN)(CO)5]- ([4]-), the result of reductive elimination from [Fe2[(μ-SCH2)2NCH2](CN)2(CO)4]-. The phosphine derivative [Fe2[(μ-SCH2)2NCH2CN](CN)(CO)4(PPh3)]- ([5]-) was characterized crystallographically.

Original languageEnglish (US)
Pages (from-to)15673-15681
Number of pages9
JournalChemical Science
Volume12
Issue number47
DOIs
StatePublished - Dec 21 2021

ASJC Scopus subject areas

  • General Chemistry

Fingerprint

Dive into the research topics of 'Inhibition of [FeFe]-hydrogenase by formaldehyde: Proposed mechanism and reactivity of FeFe alkyl complexes'. Together they form a unique fingerprint.

Cite this