TY - JOUR
T1 - Inhibition of betaine-homocysteine S-methyltransferase causes hyperhomocysteinemia in mice
AU - Collinsova, Michaela
AU - Strakova, Jana
AU - Jiracek, Jiri
AU - Garrow, Timothy A.
PY - 2006/6
Y1 - 2006/6
N2 - Inhibitors and methyl donor substrates for betaine-homocysteine S-methyltransferase (BHMT) were used to study the role of this enzyme in the regulation of plasma total homocysteine (tHcy). Mice were administered an i.p. injection of S-(δ-carboxybutyl)-DL-homocysteine (CBHcy; 1 mg), a specific and potent inhibitor of BHMT, and tHcy and hepatic BHMT protein and activity levels were monitored over a 24-h period. Compared with saline-injected control mice, at 2 h postinjection, the CBHcy-treated mice had 87% lower BHMT activity and a 2.7-fold increase (11.1 vs. 3.0 μmol/L) in tHcy, effects that lasted nearly 8 h but returned to normal by 24 h. The level of BHMT protein remained constant over the 24-h period. After 6 CBHcy (1 mg) injections (one every 12 h), the mice had 7-fold higher tHcy, a 65% reduction in the liver S-adenosylmethionine:S-adenosylhomocysteine ratio, and a marked upregulation of BHMT protein expression. At 2 h after injection of the sulfoxide derivative of CBHcy (10 mg) into mice, there was a modest reduction in BHMT activity and a 90% increase in tHcy. When given an injection of Met (3 mg) or Met plus CBHcy (1 mg), post-Met load tHcy levels were 2.2-fold higher (128 vs. 40 μmol/L) at 2 h postinjection in the mice given CBHcy. Like betaine, dimethylsulfoniopropionate was an effective tHcy-lowering agent when given with a Met load. These studies are the first to show that transient inhibition of BHMT in vivo causes transient hyperhomocysteinemia, and that dimethylsulfoniopropionate can reduce a post-Met load rise in tHcy.
AB - Inhibitors and methyl donor substrates for betaine-homocysteine S-methyltransferase (BHMT) were used to study the role of this enzyme in the regulation of plasma total homocysteine (tHcy). Mice were administered an i.p. injection of S-(δ-carboxybutyl)-DL-homocysteine (CBHcy; 1 mg), a specific and potent inhibitor of BHMT, and tHcy and hepatic BHMT protein and activity levels were monitored over a 24-h period. Compared with saline-injected control mice, at 2 h postinjection, the CBHcy-treated mice had 87% lower BHMT activity and a 2.7-fold increase (11.1 vs. 3.0 μmol/L) in tHcy, effects that lasted nearly 8 h but returned to normal by 24 h. The level of BHMT protein remained constant over the 24-h period. After 6 CBHcy (1 mg) injections (one every 12 h), the mice had 7-fold higher tHcy, a 65% reduction in the liver S-adenosylmethionine:S-adenosylhomocysteine ratio, and a marked upregulation of BHMT protein expression. At 2 h after injection of the sulfoxide derivative of CBHcy (10 mg) into mice, there was a modest reduction in BHMT activity and a 90% increase in tHcy. When given an injection of Met (3 mg) or Met plus CBHcy (1 mg), post-Met load tHcy levels were 2.2-fold higher (128 vs. 40 μmol/L) at 2 h postinjection in the mice given CBHcy. Like betaine, dimethylsulfoniopropionate was an effective tHcy-lowering agent when given with a Met load. These studies are the first to show that transient inhibition of BHMT in vivo causes transient hyperhomocysteinemia, and that dimethylsulfoniopropionate can reduce a post-Met load rise in tHcy.
KW - Betaine
KW - Dimethylsulfoniopropionate
KW - Homocysteine
UR - https://www.scopus.com/pages/publications/33646809032
UR - https://www.scopus.com/inward/citedby.url?scp=33646809032&partnerID=8YFLogxK
U2 - 10.1093/jn/136.6.1493
DO - 10.1093/jn/136.6.1493
M3 - Article
C2 - 16702310
AN - SCOPUS:33646809032
SN - 0022-3166
VL - 136
SP - 1493
EP - 1497
JO - Journal of Nutrition
JF - Journal of Nutrition
IS - 6
ER -