Information-theoretic analysis of generalization capability of learning algorithms

Aolin Xu, Maxim Raginsky

Research output: Contribution to journalConference articlepeer-review

Abstract

We derive upper bounds on the generalization error of a learning algorithm in terms of the mutual information between its input and output. The bounds provide an information-theoretic understanding of generalization in learning problems, and give theoretical guidelines for striking the right balance between data fit and generalization by controlling the input-output mutual information. We propose a number of methods for this purpose, among which are algorithms that regularize the ERM algorithm with relative entropy or with random noise. Our work extends and leads to nontrivial improvements on the recent results of Russo and Zou.

Original languageEnglish (US)
Pages (from-to)2525-2534
Number of pages10
JournalAdvances in Neural Information Processing Systems
Volume2017-December
StatePublished - 2017
Event31st Annual Conference on Neural Information Processing Systems, NIPS 2017 - Long Beach, United States
Duration: Dec 4 2017Dec 9 2017

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Information-theoretic analysis of generalization capability of learning algorithms'. Together they form a unique fingerprint.

Cite this