Information-based dynamic manufacturing system scheduling

Selwyn Piramuthu, Michael Shaw, Bill Fulkerson

Research output: Contribution to journalArticlepeer-review


Information about the state of the system is of paramount importance in determining the dynamics underlying manufacturing systems. In this paper, we present an adaptive scheduling policy for dynamics manufacturing system scheduling using information obtained from snapshots of the system at various points in time. Specifically, the framework presented allows for information-based dynamic scheduling where information collected about the system is used to (1) adjust appropriate parameters in the system and (2) search or optimize using genetic algorithms. The main feature of this policy is that it tailors the dispatching rule to be used at a given point in time to the prevailing state of the system. Experimental studies indicate the superiority of the suggested approach over the alternative approach involving the repeated application of a single dispatching rule for randomly generated test problems as well as a rael system. In particular, its relative performance improves further when there are frequent disruptions and when disruptions are caused by the introduction of tight due date jobs and machine breakdown - two of the most common sources of disruption in most manufacturing systems. From an operational perspective, the most important characteristics of the pattern-directed scheduling approach are its ability to incorporate the idiosyncratic characteristics of the given system into the dispatching rule selection process and its ability to refine itself incrementally on a continual basis by taking new system parameters into account.

Original languageEnglish (US)
Pages (from-to)219-234
Number of pages16
JournalInternational Journal of Flexible Manufacturing Systems
Issue number2
StatePublished - 2000

ASJC Scopus subject areas

  • Management Science and Operations Research
  • Industrial and Manufacturing Engineering


Dive into the research topics of 'Information-based dynamic manufacturing system scheduling'. Together they form a unique fingerprint.

Cite this