Influence of defect presence on carbon fiber and amorphous carbon thermal conductivity

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

During atmospheric re-entry, carbon microstructures evolve due to exposure to rapidly oxidizing environments. The evolution of these structures can fundamentally change intrinsic material properties and therefore performance. In this study, we use molecular dynamics to investigate the sensitivity of carbon fiber and amorphous carbon thermal conductivities to defects introduced as a consequence of these environmental factors. Pristine microstructures are first evaluated, followed by counterparts with the presence of impurities, oxygen, and etch pitting. Findings indicate diminished thermal transport capabilities of these materials for all defect types studied, and differences in conductivity of up to 50% as compared to pristine counterparts. We also conclude that etch pitting has a meaningful impact on these materials’ thermal response from the early stages of formation. Results found in this study act to advance fundamental understanding of these materials and serve as a basis for larger scale simulations.

Original languageEnglish (US)
Title of host publicationAIAA SciTech Forum 2022
PublisherAmerican Institute of Aeronautics and Astronautics Inc, AIAA
ISBN (Print)9781624106316
DOIs
StatePublished - 2022
EventAIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022 - San Diego, United States
Duration: Jan 3 2022Jan 7 2022

Publication series

NameAIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022

Conference

ConferenceAIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022
Country/TerritoryUnited States
CitySan Diego
Period1/3/221/7/22

ASJC Scopus subject areas

  • Aerospace Engineering

Fingerprint

Dive into the research topics of 'Influence of defect presence on carbon fiber and amorphous carbon thermal conductivity'. Together they form a unique fingerprint.

Cite this