Inference of latent network features via co-intersection representations of graphs

Son Hoang Dau, Olgica Milenkovic

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We propose a new latent Boolean feature model for complex networks that captures different types of node interactions and network communities. The model is based on a new concept in graph theory, termed the co-intersection representation of a graph, which generalizes the notion of an intersection representation. We describe how to use co-intersection representations to deduce node feature sets and their communities, and proceed to derive several general bounds on the minimum number of features used in co-intersection representations. We also discuss graph families for which exact co-intersection characterizations are possible, and describe algorithms for computing co-intersection numbers and assignments.

Original languageEnglish (US)
Title of host publicationProceedings - ISIT 2016; 2016 IEEE International Symposium on Information Theory
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1351-1355
Number of pages5
ISBN (Electronic)9781509018062
DOIs
StatePublished - Aug 10 2016
Event2016 IEEE International Symposium on Information Theory, ISIT 2016 - Barcelona, Spain
Duration: Jul 10 2016Jul 15 2016

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
Volume2016-August
ISSN (Print)2157-8095

Other

Other2016 IEEE International Symposium on Information Theory, ISIT 2016
Country/TerritorySpain
CityBarcelona
Period7/10/167/15/16

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Information Systems
  • Modeling and Simulation
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Inference of latent network features via co-intersection representations of graphs'. Together they form a unique fingerprint.

Cite this