Inference of Black Hole Fluid-Dynamics from Sparse Interferometric Measurements

Aviad Levis, Daeyoung Lee, Joel A. Tropp, Charles F. Gammie, Katherine L. Bouman

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We develop an approach to recover the underlying properties of fluid-dynamical processes from sparse measurements. We are motivated by the task of imaging the stochastically evolving environment surrounding black holes, and demonstrate how flow parameters can be estimated from sparse interferometric measurements used in radio astronomical imaging. To model the stochastic flow we use spatio-temporal Gaussian Random Fields (GRFs). The high dimensionality of the underlying source video makes direct representation via a GRF's full covariance matrix intractable. In contrast, stochastic partial differential equations are able to capture correlations at multiple scales by specifying only local interaction coefficients. Our approach estimates the coefficients of a space-time diffusion equation that dictates the stationary statistics of the dynamical process. We analyze our approach on realistic simulations of black hole evolution and demonstrate its advantage over state-of-the-art dynamic black hole imaging techniques.

Original languageEnglish (US)
Title of host publicationProceedings - 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2320-2329
Number of pages10
ISBN (Electronic)9781665428125
DOIs
StatePublished - 2021
Event18th IEEE/CVF International Conference on Computer Vision, ICCV 2021 - Virtual, Online, Canada
Duration: Oct 11 2021Oct 17 2021

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
ISSN (Print)1550-5499

Conference

Conference18th IEEE/CVF International Conference on Computer Vision, ICCV 2021
Country/TerritoryCanada
CityVirtual, Online
Period10/11/2110/17/21

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Inference of Black Hole Fluid-Dynamics from Sparse Interferometric Measurements'. Together they form a unique fingerprint.

Cite this