Induction of a mesenchymal expression program in lung epithelial cells by Wingless protein (Wnt)/β-catenin requires the presence of c-Jun N-terminal kinase-1 (JNK1)

Jos L.J. Van Der Velden, Amy S. Guala, Susan E. Leggett, Jasper Sluimer, Elsbeth C.H.L. Badura, Yvonne M.W. Janssen-Heininger

Research output: Contribution to journalArticlepeer-review

Abstract

Recent studies suggest the importance of the transition of airway epithelial cells (EMT) in pulmonary fibrosis, and also indicate a role for Wingless protein (Wnt)/β-catenin signaling in idiopathic pulmonary fibrosis.We investigated the possible role of the Wnt signaling pathway in inducing EMT in lung epithelial cells, and sought to unravel the role of c-Jun-N-terminal-kinase-1 (JNK1). The exposure of C10 lung epithelial cells or primary mouse tracheal epithelial cells (MTECs) to Wnt3a resulted in increases in JNK phosphorylation and nuclear β-catenin content. Because the role of β-catenin as a transcriptional coactivator is well established, we investigated T-cell factor/lymphocyte-enhancement factor (TCF/LEF) transcriptional activity in C10 lung epithelial cells after the activation of Wnt. TCF/LEF transcriptional activity was enhanced after the activation of Wnt, and this increase in TCF/LEF transcriptional activity was diminished after the small interfering (si)RNA-mediated ablation of JNK. The activation of the Wnt pathway by Wnt3a, or the expression of either wild-type or constitutively active β-catenin (S37A), led to the activation of an EMT transcriptome, manifested by the increased mRNA expression of CArG box-binding factor-A, fibroblast-specific protein (FSP)-1, α-smooth muscle actin (α-SMA), and vimentin, increases in the content of α-SMA and FSP1, and the concomitant loss of zona occludens-1. The siRNA-mediated ablation of β-catenin substantially decreased Wnt3a-induced EMT. The siRNA ablation of JNK1 largely abolished Wnt3a, β-catenin, and β-catenin S37a-induced EMT. In MTECs lacking Jnk1, Wnt3a-induced increases in nuclear β-catenin, EMT transcriptome, and the content of α-SMA or FSP1 were substantially diminished. These data show that the activation of the Wnt signaling pathway is capable of inducing an EMT program in lung epithelial cells through β-catenin, and that this process is controlled by JNK1.

Original languageEnglish (US)
Pages (from-to)306-314
Number of pages9
JournalAmerican Journal of Respiratory Cell and Molecular Biology
Volume47
Issue number3
DOIs
StatePublished - Sep 2012
Externally publishedYes

Keywords

  • Epithelial to mesenchymal transition
  • Epithelium
  • Fibrosis
  • Lung
  • Wnt3a

ASJC Scopus subject areas

  • Molecular Biology
  • Pulmonary and Respiratory Medicine
  • Clinical Biochemistry
  • Cell Biology

Fingerprint

Dive into the research topics of 'Induction of a mesenchymal expression program in lung epithelial cells by Wingless protein (Wnt)/β-catenin requires the presence of c-Jun N-terminal kinase-1 (JNK1)'. Together they form a unique fingerprint.

Cite this