Incremental Binarization on Recurrent Neural Networks for Single-channel Source Separation

Sunwoo Kim, Mrinmoy Maity, Minje Kim

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper proposes a Bitwise Gated Recurrent Unit (BGRU) network for the single-channel source separation task. Recurrent Neural Networks (RNN) require several sets of weights within its cells, which significantly increases the computational cost compared to the fully-connected networks. To mitigate this increased computation, we focus on the GRU cells and quantize the feedforward procedure with binarized values and bitwise operations. The BGRU network is trained in two stages. The real-valued weights are pretrained and transferred to the bitwise network, which are then incrementally binarized to minimize the potential loss that can occur from a sudden introduction of quantization. As the proposed binarization technique turns only a few randomly chosen parameters into their binary versions, it gives the network training procedure a chance to gently adapt to the partly quantized version of the network. It eventually achieves the full binarization by incrementally increasing the amount of binarization over the iterations. Our experiments show that the proposed BGRU method produces source separation results greater than that of a real-valued fully connected network, with 11-12 dB mean Signal-to-Distortion Ratio (SDR). A fully binarized BGRU still outperforms a Bitwise Neural Network (BNN) by 1-2 dB even with less number of layers.

Original languageEnglish (US)
Title of host publication2019 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages376-380
Number of pages5
ISBN (Electronic)9781479981311
DOIs
StatePublished - May 2019
Externally publishedYes
Event44th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019 - Brighton, United Kingdom
Duration: May 12 2019May 17 2019

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2019-May
ISSN (Print)1520-6149

Conference

Conference44th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019
Country/TerritoryUnited Kingdom
CityBrighton
Period5/12/195/17/19

Keywords

  • Bitwise Neural Networks
  • Gated Recurrent Units
  • Recurrent Neural Networks
  • Speech Enhancement

ASJC Scopus subject areas

  • Software
  • Signal Processing
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Incremental Binarization on Recurrent Neural Networks for Single-channel Source Separation'. Together they form a unique fingerprint.

Cite this