TY - JOUR
T1 - Increasing corn distillers solubles alters the liquid fraction of the ruminal microbiome
AU - McCann, J. C.
AU - Segers, J. R.
AU - Derakhshani, H.
AU - Felix, T. L.
AU - Khafipour, E.
AU - Shike, D. W.
N1 - Publisher Copyright:
© 2017 American Society of Animal Science. All rights reserved.
PY - 2017/8/2
Y1 - 2017/8/2
N2 - Five ruminally fistulated steers were used in a 5 × 5 Latin square design to determine the effects of increasing dietary fat and sulfur from condensed distiller’s solubles (CDS) on the ruminal microbiome. Treatments included a corn-based control (CON) and 4 levels of CDS (0, 10, 19, and 27%) in a coproduct-based (corn gluten feed and soybean hulls) diet. Fat concentrations were 1.79, 4.43, 6.80, and 8.91% for diets containing 0, 10, 19, and 27% CDS, respectively. Steers were fed for ad libitum intake once daily. After feeding each diet for 18 d, ruminal samples were collected 3 h after feeding on d 19. Samples were separated into solid and liquid fractions. Microbial DNA was extracted for bacterial analysis using paired-end sequencing of the V3 through V4 region of the 16S rRNA gene on the MiSeq Illumina platform and quantitative PCR of selected species. Orthogonal contrasts were used to determine linear and quadratic effects of CDS inclusion. Increasing CDS inclusion decreased (linear, P < 0.05) α-diversity and species richness in the liquid fraction. Analysis of Bray–Curtis similarity indicated a treatment effect (P = 0.01) in the liquid fraction. At the phyla level, relative abundance of Bacteroidetes decreased in steers fed increasing dietary inclusion of CDS as Firmicutes increased to 82% of sequences for the 27% CDS treatment. Family Ruminococcaceae increased (linear, P < 0.01) 2-fold in the liquid fraction when feeding CDS increased from 0 to 27% CDS, yet genera Ruminococcus tended (P = 0.09) to decrease in steers fed greater CDS. The most abundant family of sulfate-reducing bacteria, Desulfovibrionaceae, increased (P < 0.03) in the solid and liquid fraction in steers fed additional dietary CDS and sulfur. Relative abundance of family Veillonellaceae and Selenomonas ruminantium were increased (linear, P ≤ 0.02) in the solid fraction as steers were fed increasing CDS. There were no effects (P > 0.10) of feeding increasing dietary fat from CDS on fibroylytic genus Fibrobacter in either fraction. Results demonstrate increasing fat and sulfur from CDS in a coproduct-based diet markedly alters the liquid fraction ruminal microbiome but does not elicit negative effects on relative abundance of identified fiber-fermenting bacteria.
AB - Five ruminally fistulated steers were used in a 5 × 5 Latin square design to determine the effects of increasing dietary fat and sulfur from condensed distiller’s solubles (CDS) on the ruminal microbiome. Treatments included a corn-based control (CON) and 4 levels of CDS (0, 10, 19, and 27%) in a coproduct-based (corn gluten feed and soybean hulls) diet. Fat concentrations were 1.79, 4.43, 6.80, and 8.91% for diets containing 0, 10, 19, and 27% CDS, respectively. Steers were fed for ad libitum intake once daily. After feeding each diet for 18 d, ruminal samples were collected 3 h after feeding on d 19. Samples were separated into solid and liquid fractions. Microbial DNA was extracted for bacterial analysis using paired-end sequencing of the V3 through V4 region of the 16S rRNA gene on the MiSeq Illumina platform and quantitative PCR of selected species. Orthogonal contrasts were used to determine linear and quadratic effects of CDS inclusion. Increasing CDS inclusion decreased (linear, P < 0.05) α-diversity and species richness in the liquid fraction. Analysis of Bray–Curtis similarity indicated a treatment effect (P = 0.01) in the liquid fraction. At the phyla level, relative abundance of Bacteroidetes decreased in steers fed increasing dietary inclusion of CDS as Firmicutes increased to 82% of sequences for the 27% CDS treatment. Family Ruminococcaceae increased (linear, P < 0.01) 2-fold in the liquid fraction when feeding CDS increased from 0 to 27% CDS, yet genera Ruminococcus tended (P = 0.09) to decrease in steers fed greater CDS. The most abundant family of sulfate-reducing bacteria, Desulfovibrionaceae, increased (P < 0.03) in the solid and liquid fraction in steers fed additional dietary CDS and sulfur. Relative abundance of family Veillonellaceae and Selenomonas ruminantium were increased (linear, P ≤ 0.02) in the solid fraction as steers were fed increasing CDS. There were no effects (P > 0.10) of feeding increasing dietary fat from CDS on fibroylytic genus Fibrobacter in either fraction. Results demonstrate increasing fat and sulfur from CDS in a coproduct-based diet markedly alters the liquid fraction ruminal microbiome but does not elicit negative effects on relative abundance of identified fiber-fermenting bacteria.
KW - Bacteria
KW - Distillers solubles
KW - Microbiome
KW - Rumen
UR - http://www.scopus.com/inward/record.url?scp=85026882982&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85026882982&partnerID=8YFLogxK
U2 - 10.2527/jas.2016.1361
DO - 10.2527/jas.2016.1361
M3 - Article
C2 - 28805891
AN - SCOPUS:85026882982
SN - 0021-8812
VL - 95
SP - 3540
EP - 3551
JO - Journal of animal science
JF - Journal of animal science
IS - 8
ER -