Abstract
A single-grid broad-beam ion source was used for low-energy (50-500 eV) accelerated In+ ion beam doping during growth of Si(100) layers by molecular-beam epitaxy. Indium incorporation behavior was studied as a function of ion energy (E+In=50-500 eV), substrate temperature (Ts=500-1050 °C), ion flux (J+In= 1×109-5×1012 cm- 2 s-1), and Si growth rate (R=0.1-1.3 nm s -1). Dopant concentration profiles obtained using secondary ion mass spectroscopy showed that abrupt doping profiles were obtained at Ts<900 °C and R=0.7 μm h-1, the incorporation probability σ+In was close to unity for E+In≥200 eV, while σ+In was less than unity and decreased gradually with increasing Ts for E+In≤100 eV. At Ts≥900 °C, σ+In decreased rapidly with increasing Ts for all ion energies. The incorporation results are interpreted using a qualitative model based on different types of binding sites for In with incident energies ranging from thermal to 500 eV. A procedure, utilizing accelerated ions, for the growth of ultrathin doped layers is also suggested.
Original language | English (US) |
---|---|
Pages (from-to) | 172-179 |
Number of pages | 8 |
Journal | Journal of Applied Physics |
Volume | 65 |
Issue number | 1 |
DOIs | |
State | Published - 1989 |
Externally published | Yes |
ASJC Scopus subject areas
- Physics and Astronomy(all)