Incorporating Task-Specific Concept Knowledge into Script Learning

Chenkai Sun, Tie Xu, Cheng Xiang Zhai, Heng Ji

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this paper, we present TETRIS, a new task of Goal-Oriented Script Completion. Unlike previous work, it considers a more realistic and general setting, where the input includes not only the goal but also additional user context, including preferences and history. To address this problem, we propose a novel approach, which uses two techniques to improve performance: (1) concept prompting, and (2) script-oriented contrastive learning that addresses step repetition and hallucination problems. On our WikiHow-based dataset, we find that both methods improve performance.

Original languageEnglish (US)
Title of host publicationEACL 2023 - 17th Conference of the European Chapter of the Association for Computational Linguistics, Proceedings of the Conference
PublisherAssociation for Computational Linguistics (ACL)
Pages3018-3032
Number of pages15
ISBN (Electronic)9781959429449
StatePublished - 2023
Event17th Conference of the European Chapter of the Association for Computational Linguistics, EACL 2023 - Dubrovnik, Croatia
Duration: May 2 2023May 6 2023

Publication series

NameEACL 2023 - 17th Conference of the European Chapter of the Association for Computational Linguistics, Proceedings of the Conference

Conference

Conference17th Conference of the European Chapter of the Association for Computational Linguistics, EACL 2023
Country/TerritoryCroatia
CityDubrovnik
Period5/2/235/6/23

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Software
  • Linguistics and Language

Fingerprint

Dive into the research topics of 'Incorporating Task-Specific Concept Knowledge into Script Learning'. Together they form a unique fingerprint.

Cite this