Incentives in Federated Learning: Equilibria, Dynamics, and Mechanisms for Welfare Maximization

Aniket Murhekar, Zhuowen Yuan, Bhaskar Ray Chaudhury, Bo Li, Ruta Mehta

Research output: Contribution to journalConference articlepeer-review

Abstract

Federated learning (FL) has emerged as a powerful scheme to facilitate the collaborative learning of models amongst a set of agents holding their own private data. Although the agents benefit from the global model trained on shared data, by participating in federated learning, they may also incur costs (related to privacy and communication) due to data sharing. In this paper, we model a collaborative FL framework, where every agent attempts to achieve an optimal trade-off between her learning payoff and data sharing cost. We show the existence of Nash equilibrium (NE) under mild assumptions on agents' payoff and costs. Furthermore, we show that agents can discover the NE via best response dynamics. However, some of the NE may be bad in terms of overall welfare for the agents, implying little incentive for some fraction of the agents to participate in the learning. To remedy this, we design a budget-balanced mechanism involving payments to the agents, that ensures that any p-mean welfare function of the agents' utilities is maximized at NE. In addition, we introduce a FL protocol FedBR-BG that incorporates our budget-balanced mechanism, utilizing best response dynamics. Our empirical validation on MNIST and CIFAR-10 substantiates our theoretical analysis. We show that FedBR-BG outperforms the basic best-response-based protocol without additional incentivization, the standard federated learning protocol FedAvg (McMahan et al. [2017]), as well as a recent baseline MWFed (Blum et al. [2021]) in terms of achieving superior p-mean welfare.

Original languageEnglish (US)
JournalAdvances in Neural Information Processing Systems
Volume36
StatePublished - 2023
Event37th Conference on Neural Information Processing Systems, NeurIPS 2023 - New Orleans, United States
Duration: Dec 10 2023Dec 16 2023

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Incentives in Federated Learning: Equilibria, Dynamics, and Mechanisms for Welfare Maximization'. Together they form a unique fingerprint.

Cite this