Inactivation of highly activated spinach leaf sucrose-phosphate synthase by dephosphorylation

Joan L. Huber, Daniel R.C. Hite, William H. Outlaw, Steven C. Huber

Research output: Contribution to journalArticle

Abstract

Spinach (Spinacia oleracea L.) leaf sucrose-phosphate synthase (SPS) can be phosphorylated and inactivated in vitro with [γ-32P]ATP (JLA Huber, SC Huber, TH Nielsen [1989] Arch Biochem Biophys 270: 681-690). Thus, it was surprising to find that SPS, extracted from leaves fed mannose in the light to highly activate the enzyme, could be inactivated in an ATP-independent manner when desalted crude extracts were preincubated at 25°C before assay. The "spontaneous" inactivation involved a loss in activity measured with limiting substrate concentrations in the presence of the inhibitor, Pi, without affecting maximum catalytic activity. The spontaneous inactivation was unaffected by exogenous carrier proteins and protease inhibitors, but was inhibited by inorganic phosphate, fluoride, and molybdate, suggesting that a phosphatase may be involved. Okadaic acid, a potent inhibitor of mammalian type 1 and 2A protein phosphatases, had no effect up to 5 micromolar. Inactivation was stimulated about twofold by exogenous Mg2+ and was relatively insensitive to Ca2+ and to pH over the range pH 6.5 to 8.5. Radioactive phosphate incorporated into SPS during labeling of excised leaves with [32P]Pi (initially in the dark and then in the light with mannose) was lost with time when desalted crude extracts were incubated at 25°C, and the loss in radiolabel was substantially reduced by fluoride. These results provide direct evidence for action of an endogenous phosphatase(s) using SPS as substrate. We postulate that highly activated SPS contains phosphorylated residue(s) that increase activation state, and that spontaneous inactivation occurs by removal of these phosphate group(s). Inactivation of SPS in vivo caused by feeding uncouplers to darkened leaf tissue that had previously been fed mannose in the dark, may occur by this mechanism. However, there is no evidence that this mechanism is involved in light-dark regulation of SPS in vivo.

Original languageEnglish (US)
Pages (from-to)291-297
Number of pages7
JournalPlant physiology
Volume95
Issue number1
DOIs
StatePublished - Jan 1991

ASJC Scopus subject areas

  • Physiology
  • Genetics
  • Plant Science

Fingerprint Dive into the research topics of 'Inactivation of highly activated spinach leaf sucrose-phosphate synthase by dephosphorylation'. Together they form a unique fingerprint.

Cite this