Abstract
We developed glycopolyesters (GPs) via azido-sugar initiated ring-opening polymerization of O-carboxyanhydrides (OCAs) and achieved efficient in vivo cancer targeting via GP-nanoparticle (GP-NP) mediated metabolic cell labeling followed by Click reaction. GP-NP shows controlled release of azido-sugars and can efficiently label LS174T colon cancer cells with azido groups in tumor-bearing mice. The exogenously introduced azido groups render excellent in vivo cancer targeting and retention of dibenzocyclooctyne-Cy5 (DBCO-Cy5) with an increasing tumor retention enhancement over time (68% at 6 h, 105% at 24 h, and 191% at 48 h) compared to control mice without azido labeling. The tumor accumulation of DBCO-doxorubicin is also significantly enhanced in GP-NP pretreated mice, resulting in improved in vivo anticancer efficacy. This study, for the first time, proposes the use of azido-sugar initiated polymerization of OCAs to form sugar delivery vehicles with high stability and controlled release, and demonstrates the increasing tumor targeting effect of DBCO-cargo over time by azido-modified tumor cells.
Original language | English (US) |
---|---|
Article number | 119305 |
Journal | Biomaterials |
Volume | 218 |
DOIs | |
State | Published - Oct 2019 |
Keywords
- Cancer targeting
- Cell labeling
- Click chemistry
- Drug design
- Sugar
ASJC Scopus subject areas
- Mechanics of Materials
- Ceramics and Composites
- Bioengineering
- Biophysics
- Biomaterials